
A new Multilevel Hierarchical MFPGA and its suitable
configuration tools

Zied Marrakchi, Hayder Mrabet and Habib Mehrez
Dept ASIM-LIP6

Université Paris 6, Pierre et Marie Curie
4, Place Jussieu, 75252 Paris, France

{zied.marrakchi, hayder.mrabet, habib.mehrez}@lip6.fr

ABSTRACT
In this paper we evaluate a new multilevel hierarchical MF-
PGA. The specific architecture includes two unidirectional
programmable networks: A downward network based on the
Butterfly-Fat-Tree topology, and a special rising network.
New tools are developed to place and route several bench-
mark circuits on this architecture. Comparison with the
traditional symmetric, manhattan mesh architecture shows
that MFPGA can implement circuits with fewer switches
and a smaller area.

Keywords
FPGA, Hierarchical, Multilevel, Clustering, Routing

1. INTRODUCTION
The architecture of an FPGA is similar to a gate array

and can be programmed to specify the function of the logic
blocks and their interconnections. However these arrays suf-
fer from lower density and speed compared with applica-
tion specific integrated circuits ASICs. The most common
FPGA architecture is the mesh which has a symmetrical
grid of logic blocks and routing channels on all four sides
of the logic blocks. Less work has been done for hierarchi-
cal FPGAs (HFPGAs), which contain a hierarchy of logic
blocks and routing resources. HFPGA whose channels are
fully populated with switches offers lower density than the
other ones but have the advantage that routing has more
predictable paths as well as lower delays. In previous pa-
pers [4] [9] different FPGAs with hierarchical depopulated
interconnection structures were proposed to improve these
shortcomings.
In our work we are also interested by this kind of archi-
tectures. We have explored the architecture of hierarchical
HFPGA with regard to the particular issue of how the switch
patterns of HFPGA can be partly depopulated. In fact the
structure that we propose has a better ratio between logic
and routing resources occupations than conventional mesh
FPGAs. Hence the density of HFPGAs can be higher than
conventional ones. Moreover, because fewer switches are
needed for a connection path, the timing-skew problem is
alleviated.
In this paper we give a description of our proposed architec-
ture and the suitable techniques to program it.

2. ARCHITECTURE OVERVIEW
A standard hierarchical FPGA is denoted k-HFPGA in

which a cluster has k subclusters. The structure can be rep-
resented by a tree. Figure 1 is an example of a 4-HFPGA
where a cluster contains four subclusters. A vertex in this
tree is used to represent a logic or a switch box. An edge
between two vertices is used to represent a routing channel
which consists of many tracks. The logic blocks are at the
bottom of the tree while the switch boxes are those vertices
above the logic blocks. We propose a modified multilevel hi-
erarchical architecture denoted MFPGA which can be more
interesant in terms of area and performances. Our architec-
ture has the following particularities:

- The lowest level of the hierarchy contains the Logic
blocks and the IO pads. Each logic element contains
one 4 inputs Look-Up Table (4-LUT) followed by a
bypass Flip-Flop.

- The routing architecture contains only unidirectional
wires and the switch boxes are depopulated.

- In each level the ratio between parent tracks and child
tracks is equal to k (k is the number of slaves in the
cluster).

As we use unidirectional switches, we can distinguish two
connecting networks as shown in figure 1.

S

S S S S

Logic Blocks & IO pads

Figure 1: Connection networks

- A downward connecting network whose topology is
equivalent to the butterfly fat tree. In this tree the
edges come from the upper levels and reach the in-
puts of the logic blocks. The topology of this tree is
equivalent to the one used in SPIN network [1] [2]

- An upward connecting network whose edges come from
the leaves (outputs of logic blocks and input pads) to
the switch boxes of each level.

2.1 The downward connecting network
Let us consider the case of a 2 levels tree with an arity

equal to 4. In each level a cluster contains 4 slaves and a
switch box. To depopulate the switch boxes, we divide it
into four Mini Switch Boxes (MSB). In level 0 each MSB is
in charge of connecting the upper level tracks and one input
of each logic block as depicted in figure 2. Thus each MSB
has 4 outputs which are equal to the number of logic blocks
(slaves). The level 1 is constructed in the same manner, we

L L L L

MSB MSB MSB MSB

Inputs Inputs Inputs Inputs

MSB : Mini Switch BoxL : Logic Block

Figure 2: Top-down connecting tree in level 0

connect the switch box of each cluster of level 1 to 4 clusters
belonging to level 0. As each cluster in level 0 has 16 inputs,
we divide the switch boxes into 16 MSB and connect each
one to one input of a cluster slave. Figure 3 shows the
distribution of the interconnect in level 1. The previous

L L L L

MSB MSB MSB MSB

L L L L

MSB MSB MSB MSB

L L L L

MSB MSB MSB MSB

L L L L

MSB MSB MSB MSB

MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB

MSB : Mini Switch BoxL : Logic Block

Figure 3: Top-down connecting tree in level 1

described butterfly fat tree has the following properties:

- From a track located in the top of a switch box we can
reach any slave but in only one pin.

- From a track of a switch box we have only one path to
reach a particular slave. Due to the regularity of the
architecture, this path is easily predicted.

- In each level the interconnect resources are balanced
between clusters.

2.2 The upward connecting network
The next question is how can the outputs of logic blocks

and the input pads reach the inputs of other logic blocks.
We propose to connect the output signals to specific switch
boxes of upper levels. Thus for each logic block output (and
input pad), we define a list of feedbacks, each one enables
the output to reach a switch box in a particular level. An
output of a source cell can reach its destination only if it has
a feedback in the lowest common level or in a higher one.
The way how we distribute the feedbacks on each level has an
important impact on the number of different paths to reach
a destination logic block from a source. In fact, if in each
level the feedback is connected to an MSB with an index
different from the one in the previous level, we can obtain
two different paths to reach a cell. In our case we distribute

MSB MSB MSB MSB

MSB MSB MSB MSB

MSB MSB MSB MSB

MSB MSB MSB MSB

MSB MSB MSB MSB

MSB MSB MSB MSB

a) b)

C
lu

st
er

 le
ve

l 2

C
lu

st
er

 le
ve

l 1

C
lu

st
er

 le
ve

l 0

C
lu

st
er

 le
ve

l 0
C

lu
st

er
 le

ve
l 1

C
lu

st
er

 le
ve

l 2

LBLB LB LBLBLB LB LB

Figure 4: The rising connecting tree and different routing paths

the feedbacks as depicted in figure 4-a. We achieve a multi
path structure which enhances the routability and gives us
more different possibilities to reach a destination. As shown
in figure 4-b, using two different feedbacks (located in two
different levels), an output pin can reach a destination cell
from two different paths but in two different pins. Since all
the input pins in a LUT are logically equivalent, the router
can complete a given connection using any one of the input
pins of a LUT. Changing the ordering of the inputs in a
LUT due to the connections performed by the router can be
compensated by re-ordering the values of the LUT mask.

2.3 Connection with outside
As explained previously the input pads are located in the

bottom of the architecture and are located inside the clusters
of the level 0. These pads are connected like the outputs of
the logic block in the rising network. The last point in this
architecture concerns the location of the output pads. Those
pads are also located inside clusters of level 0. To reduce
the complexity of the routing architecture, those pads are
not connected to the descending tree. Thus they have their
own network interconnect. This interconnect is local to the
container cluster. As shown in figure 5 each output pad can
be driven only by outputs of a logic blocks belonging to the
same cluster. Such a layout simplifies the task of the router
but adds more constraints to the placer.

3. PLACEMENT
In this section, we present the placement technique used

in the case of our hierarchical MFPGA. As explained pre-
viously our routing resources are limited and we have a few
different ways to connect a source to a destination. Thus
the placement of the cells has an important impact on the
routability of the netlists. In fact most part of the effort
will be devoted to the placement phase. Placement is done
in two steps. First we apply a global placement. The aim
of this phase is to balance the nets to route between clus-
ters. It consists on a multilevel clustering and a multilevel
refinement phases. Second in each level we run a detailed
placement to select slots that will be occupied inside clus-
ters. As it will be explained in the following, this second
phase is important to alleviate the routing congestion.

3.1 Multilevel clustering
DeHon [6] showed that for hierarchical FPGAs, 100% logic

utilisation is not necessary benefical for overall device area
minimisation. He presented some initial evidence to sup-
port this claim and presented a technique for depopulating
gates in a hierarchical array. His results indicate that a care-
ful partitioning of designs and depopulation of logic clusters
can result in better FPGA resources utilisation. This re-
mark was confirmed by results obtained by Singh [3] in the
case of clustered mesh FPGA. In this work authors present
the routability-driven bottom-up clustering technique. The
aim of their technique is to alleviate routing congestion by
absorbing as many nets into clusters as possible, and depop-
ulating clusters according to Rent’s rule in order to achieve
spatial uniformity in the clustered netlist. In the following
we explain how we have extended this technique to multi-
level hierachical MFPGA clustering.
The clustering algorithm begins by choosing a logic block as
a seed (the block with the highest separation) and assigning
it to the first available slot in a cluster. We use the same
objectif function proposed in [3]. First we identify low fan-
out nets and then we absorb them into a cluster.
In order to garantee spatial uniformity of the clustered netlist,
we limit the number of available pins. Since in each level
the interconnect is balanced between clusters, an attempt

MSB MSB MSBMSB

Local Interconnect

In In In In

LBLB LB LB

Out Out

Figure 5: IO Pads connections

is made to spread the logic evenly across all clusters in the
level while limiting the number of pins available. An un-
clustered block can be absorbed into a cluster only if cluster
size and a pins constraint (balancing constraint) are sat-
isfied. The pins constraint can lead potentially to spatial
uniformity and less than 100% cluster utilisation. As it is
shown in [3], the described clustering technique can reduce
the number of external nets and eliminate regions (clusters)
with high congestion. Once clustering has been done, the
original netlist is reduced to a new netlist with each node
corresponding to a cluster. We propose to apply the same
technique to construct super-clusters of clusters (see figure
6). Thus we use the same gain function to compute the
attraction of each block to a cluster. We notice that pins
constraints enforcing is inefficient when it is applied in high
levels. This is due essentially to the bottom-up and the
greedy aspect of our clustering technique. In fact in most
cases when we impose pins constraints the tool needs more
than the allowed clusters to achieve the clustering. To deal
with such problem, we propose to create clusters in high
levels without pins constraints enforcing. As presented in
figure 6, once the multilevel clustering is achieved, we run a
top-down refinement. The aim of this refinement is to move
some blocks between clusters to reduce the number of pins
per cluster in each level (pins balancing).

clustering
 &

FM refinement

clustering FM refinement

Level 0

Level 1

original cells netlist clustered netlist

constraints enforcing

Figure 6: Multilevel clustering & refinement

3.2 Multilevel refinement
After the clustering phase, we obtain k clusters in each

level. We can consider that the k clusters in a level present
an initial solution to a k-way partitioning problem. Dur-
ing the refinement phase, cells will be moved between clus-
ters (parts) to optimise an objective function without vi-
olating the constraints imposed by the cluster size. In a
level, cells are not allowed to move between all clusters, be-
cause this can decrease the quality of the solution obtained
in the higher level. To prevent such bad effect, cells can
only move between neighboring clusters. We call neighbor-
ing clusters, all clusters in a level belonging to the same
supercluster. Thus in every level, neighboring clusters will
be isolated and form a subgraph. In figure 6 those sub-
graphs are presented by the continued lines and partition
by the dashed ones. A cell is allowed only to move across
dashed lines. The objective function is local to each sub-
graph and corresponds to the maximum number of pins of
all clusters (parts) belonging to the same subgraph. An FM

algorithm [7] will be applied on a subgraph to optimise the
local objective function. As described in [7] [10] this algo-
rithm uses k(k-1) priority queues, one for each type of move.
In each step of the algorithm, the moves with the highest
gain are found from each of these k(k-1) queues, and the
move with the highest gain that preserves or improves the
balance, is performed. Note that the gain of a cell may be
negative. After the move, all of the k(k-1) priority queues
are updated. The balance criterion is used to select the clus-
ter (part) from which a cell with the highest gain is to be
moved. In our case, in each move we allow only one clus-
ter to contain a number of cells exceeding the limit imposed
by the architecture (the arity of the level). After all cells
have been moved, the partition which has the best global
gain and which respects the architecture arity is retained as
the output result of this pass. The complexity of our k-way
refinement is reduced since we do not apply it for all the
graph but successively for each subgraph (in each subgraph
there are small values of parts: Arity of the architecture).
The hill-climbing capability of the FM algorithm serves a
very important purpose. It allows movement of an entire
cluster of vertices across a partition boundary. Note that
it is quite possible as the cluster is moved across the parti-
tion boundary, the value of the objective function increases,
but after the entire cells moves across the partition, then
the overall value of the objective function comes down. As
shown in figure 6, when we apply refinement, we begin from
high levels down to lower ones.

3.3 Detailed placement
Now that we have obtained clusters with minimum num-

ber of pins and containing highly connected cells in each
level, we proceed to the detailed placement. As in the pro-
posed architecture we do not have full cross bar connection
boxes, we can not place cells randomly inside the clusters. In
fact the way cells are placed has an important impact on the
routability. If during the detailed placement special prop-
erties of the netlist and the interconnect can be exploited,
significant gains can be obtained in terms of routability and
congestion reduction. The effect of the detailed placement
on routability can be explained by the example shown in fig-
ure 7. In this example we have placed two logic blocks and
an Input Pad in the same cluster. The logic block in position
0 LB0 and the Input pad in position 0 In0 drive the logic
block placed in position 2 LB2. With the present place-
ment we can not route both signals using only the switch
box in level 0. In fact both signals reaches the target block
in the same pin. This problem can be resolved by simply
changing the position of one of the driver blocks. This prob-
lem can also occur between two logic bloks located in two
different clusters and trying to drive the same logic block.
Our detailed placement is applied seperately in each level.
For example we will present how this technique is applied
in level 0. The same method can be extended to the other
levels. In level 0 we notice that congestion is generated by
cells that drive the same destination cell. Thus we intro-
duce the notation of Cells Constraints Graph (CCG). Given
a clustered netlist and a placement problem, a CCG denoted
as Gn = (V, En) consists of a set of vertices and edges, can
be constructed from a netlist. In a CCG, a vertex is used
to represent a cell of the netlist and an edge is constructed
between two vertices which drive the same destination cell.
Those cells are called adjacent cells.

A CCG is used to represent the routing constraints for a
placement problem in a particular level. This means that
the placement of vertices will depend on the positions of the
adjacent vertices that have been already placed. Thus the
placement of vertices will introduce constraints on the place-
ment of the adjacent vertices. For each vertice we reserve a
list of allowed positions (slots) inside the cluster. Initially
each vertice has k possibilities (arity of the cluster). Our
algorithm is as the following:

Loop over not placed vertices

Eliminate occupied positions

Loop over placed adjacent vertices

Find positions to avoid

End

END

To eliminate positions considering the adjacent placed ver-
tices, we define a specific function that takes in account the
following parameters:

- Clusters where the common destination, the vertice to
place and the placed adjacent vertices are located.

- Type of the vertices to be placed and the adjacent
placed ones (logic block/Inpud pad).

In our technique the order of placing vertices is very impor-
tant and has a great impact on the efficienty of the method.
We give priority to vertices that have the following proper-
ties:

- Vertices located far from their destinations. We know
that these vertices have less paths to reach their des-
tinations.

- Vertices with high number of adjacent vertices: more
constraints.

Vertices are sorted depending on both previous properties
and then placed by the algorithm following the method that
we have described. The technique is expanded on all lev-
els. When we apply the technique we begin from high levels
down to lower ones.

Y ZXW

A B C D

A B C D

Y ZXW

MSB MSB MSB MSB

C
lu

st
er

 le
ve

l 0

OutOut Out Out

LB 0 LB 1 LB 2 LB 3

In 0 In 1 In 2 In 3

Figure 7: Impact of detailed placement on routability

4. ROUTING
The routing problem can be stated as assigning signals to

routing resources in order to successfully route all signals.
This goal is difficult to achieve in our architecture because
of the lack of routing resources (depopulated switch boxes).
In fact the number of paths to reach a destination from a
source is significantly reduced and those paths depend on
the location of cells and the number of levels in the archi-
tecture. Thus signals will compete for the same resources
and the challenge is to find a way to allocate resources so
that all signals can be routed. Despite this disadvantage we
have a great advantage in our architecture since our unique
path is predictable. Unlike the other architecture (mesh-
connected arrays, Triptych ...) we do not need to define a
directed graph to describe the routing architecture. This
reduces the routing process complexity.
We have studied different routing techniques to find the most
suitable one for our approach. For example the obstacle
avoidance algorithm could be used: if in one path we find
a used resource we can try another path by jumping to an-
other level (using another feedback). This algorithm is easy
to implement but it usually yields to many unroutable nets.
Some rip-up and retry approaches have been proposed to
remedy the deficiencies of this approach [5].
To route our architecture we adopted a particular iterative
rip-up algorithm based on the congestion negotiation called
PathFinder [8]. PathFinder was applied to the mesh archi-
tectures and we have adapted it to our architecture. Since
we have only one path downwards to reach a destination, we
have eliminated the breath-first search in the detailed rout-
ing part. Our detailed router corresponds to a function that
determines directly the next wire to reach destination. In
any way once we have chosen the corresponding feedback,
only one path (only one next wire) can bring us to the des-
tination.
Since the choice of the feedback imposes the path to follow,
our negotiation must be done on the choice of the feedback
that leads to a path with less congestion. According to this
remark, we assign to each feedback an adjustable cost. The
global router dynamically adjusts the congestion penalty for
each feedback. During the first iteration of the global router
each feedback has a cost equal to the index of the level where
it is located. This encourages the use of lower level to reduce
the path length and the number of switches to cross. Dur-
ing this iteration individual routing resources may be used
by more than one signal. During subsequent iterations the
penalty to use shared resources is gradually increased so that
signals will negotiate effectively for resources. In fact costs
of feedbacks of a source will change: a feedback belonging to
a higher level can get a cost lower than a feedback located
in a lower level. The implemented algorithm is described in
the following:

While shared resources exist

/*global router*/

Loop over all signals i

Loop until all sinks tij are found

Rip up branch Bij

Find feedback fij with lowest cost

Bij <- fij

/*detailed router*/

Loop until new tij is found

Find next_wire

Add next_wire to Bij

End

End

End

/*backtrace*/

Loop over nodes in Bij

/*path from tij to si*/

Update cost of fij

END

END

The algorithm is based on two simple and basic functions
that are very depended on our MFPGA routing architecture.
The first one belongs to the global router and determines the
feedback that the source will use to reach the destination.
Knowing the source cell index, the sink cell index, this func-
tion return the best level to jump to, in other words the
feedback with the lowest cost. The second function belongs
to the detailed router and determines the next wire to use
to reach destination knowing the actual wire index.

5. RESULTS
To validate and study the performances of our tools, we

placed and routed some of the MCNC benchmark circuits.
As shown in table 1 results are very promising since we were
able to route circuits that occupies until 77% of the logic
area. We have tested the effect of the refinement phase
which was run after the multilevel clustering. So we have
tried to rout resulting placed netlist in both cases:

• Multilevel clustering without FM refinement (column
10 of table 1).

• Multilevel clustering followed by FM refinement (col-
umn 11 of table 1).

We have noticed that in most cases the FM refinement alle-
viates congestion and leads to full routability. Nevertheless
the router failed to route benchmarks with very high occu-
pation like b9. In this case the router routes a large amount
of the nets (until 98%). To improve the performances of the
router we propose to:

• Better use routing resources by modifying the distribu-
tion of the rising interconnect or increasing the number
of feedbacks in each level (An output can have more
than one feedback in a level).

• Improve the placement and especially the detailed one
(alleviate congestion).

To have an idea of the area efficienty of our architecture,
we have compared switches and area requirements between
our MFPGA architecture and the traditional mesh topology.
The mesh is similar to the vpr422 challange arch architec-
ture with uniform routing with single-length segments and
a subset switch box. Each Logic Block contains only one
4-LUT. One input appears in each side, and the output ap-
pears on the top and the right side. Both the inputs and
the outputs are fully populated (Fc = 1). The IO pads are
fully populated too.

We use the channel minimising VPR 4.3 router to route
the mesh, and we vary the IO ratio to achieve the optimal
array size.

Benchmark Mesh MFPGA

Name LUTs
√

N W IO Switches Area (λ2) Arch Occup- R% R% Switches Area (λ2)
ratio number x103 ation% +ref % number x103

b1 4 2 3 2 300 1284 4 100 100 100 32 288
cm138a 9 3 4 2 824 3344 4x4 56 100 100 512 2032
cm42a 10 4 3 1 948 4344 4x4 63 100 100 512 2032
pcle 29 6 5 2 3700 15316 4x2x2x4 46 100 100 3584 11968

decod 32 6 4 1 2768 11822 4x4x4 50 95 100 3584 11648
cc 33 6 5 2 3700 15316 4x4x4 52 92 100 3584 11648

count 37 7 5 2 4950 20577 4x4x2x2 58 98 100 4096 12608
my adder 49 7 4 2 3960 16680 4x4x4 77 100 100 3584 11648

b9 61 8 5 4 7020 28656 4x4x4 96 90 98 3584 11648
i4 110 11 7 5 18298 71289 4x4x4x4 42 87 100 20480 46080

c2670 363 20 8 5 63968 249172 4x4x4x4x4 35 92 100 106496 299008
i9 471 22 8 2 72480 286356 4x4x4x4x4 46 85 100 106496 299008

Table 1: Benchmark statistics

VPR chooses the optimal size as well as the optimal chan-
nel width needed to place and route each benchmark. For
the MFPGA we choose the structure that is large enough
to support the benchmark circuit. MFPGA structures can
be varied by changing the number of level, the arity of each
level.
In both cases the number of switches consumed by each
benchmark corresponds to the total number of switches used
by the overall optimal target architecture.
We compare the area of both architectures using both a sim-
ple cost model based on routing switches count, and a more
refined model that estimates effective circuit area. The mesh
area is the sum of its basic cells area like SRAMs, Tri-states
and multiplexers. The same thing with the MFPGA com-
posed primarily of SRAMs and Multiplexers. We use the
same cells library for both architectures.
Column 9 of table 1 shows the occupation average of each
circuit in the target MFPGA. There is a low occupation av-
erage in the majority of the benchmarks. This is due to the
depopulation of the interconnect. As mentioned previously
we under-utilise the logic resources in this type of structure.
In addition, the size of the smallest MFPGA that can con-
tain the circuit under investigation is penalised due to the
coarse granularity of this architecture. In spite of these con-
straints we achieve a gain in area efficiency compared to the
mesh. Columns untitled ”Switches number” and ”Area” in
table 1 show the difference in number of switches and the
total area in the Mesh and the MFPGA structures.
It is clear from this comparison that the new architecture
will be more efficient in terms of area if we can increase the
Logic utilisation.

6. CONCLUSION
This paper described a new hierarchical multilevel MF-

PGA architecture and its suitable configuration tools. The
preliminary results show that good balancing of the LUT
and the interconnect utilisation reduces area compared with
traditional Mesh architectures.
The new topology based on two hierarchical unidirectional
networks seems to be more robust and can achieve better
speed than symmetrical FPGA architectures.
The downward network is a predictable interconnect which
has a very interesting impact on accelarating the routing

phase.
The routing key of the proposed architecture is the upward
network. Enhancing the routability needs to populate the
upward network to increase paths between sources and des-
tinations. This can leads to area increasing, but can be
compensated by applying the Rent’s rule to reduce the clus-
ter inputs/outputs

7. REFERENCES
[1] A. G. A. Adrijean. Micro-network for soc:

Implementation of a 32-port spin network. Proc.
DATE’03, pages 1128–1129, march 2003.

[2] A. G. A. Adrijean. Spin: a scalable, packet switched,
on-chip micro-network. Proc. DATE’03, pages 70–73,
march 2003.

[3] M. M.-S. A. Singh. Efficient circuit clustering for area
and power reduction in fpgas. Proc. FPGA’02,
February 2002.

[4] A. A. Aggarwal and D. M. Lewis. Routing architecture
for hierarchical field programmable gate arrays. Pro.
IEEE Custom Integrated Circuits Conference, 1994.

[5] W. Dees and R. Smith. Performance of
interconnection rip-up and reroute strategies. Proc.
DAC, pages 382–390, June 1981.

[6] A. DeHon. balancing interconnect and computation in
a reconfigurable array (or why you don’t really want
100% lut utilisation). Proc. FPGA’99, 1999.

[7] C. M. Fiduccia and R. M. Mattheyeses. A linear-time
heuristic for improving network partitions. Proc.
DAC, pages 175–181, 1982.

[8] C. E. L. McMurchie. Pathfinder: A negotiation-based
performance-driven router for fpgas. Proc.FPGA’95,
1995.

[9] Y. T. Lai and P. T. Wang. Hierarchical
interconnection structures for field programmable gate
array. IEEE Trans. VLSI, pages 186–196, 1997.

[10] L. A. Sanchis. Multiple-way network partitioning.
IEEE Trans. on computers, 38(1), January 1989.

