
Performances improvement of FPGA using novel multilevel
hierarchical interconnection structure

Hayder Mrabet, Zied Marrakchi,Pierre Souillot and Habib Mehrez
LIP6, Université Pierre et Marie Curie
4, Place Jussieu, 75252 Paris, France

ABSTRACT
This paper presents a new Multilevel hierarchical FPGA
(MFPGA) architecture that unifies two unidirectional pro-
grammable networks: A predictible downward network based
on the Butterfly-Fat-Tree topology, and an upward network
using hierarchy. Studies based on the Rent’s Rule show that
wiring and switch requirements in the MFPGA grow slower
than in traditional topologies. New tools are developed to
place and route several benchmark circuits on this architec-
ture. Experimental results based on the MCNC benchmarks
show that MFPGA can implement circuits with an average
gain of 40% in total area compared with mesh architecture.

1. INTRODUCTION
Earlier Field Programmable Gate Arrays(FPGAs) pro-

vided a sea of Look-Up Tables(LUTs) and registers which
are linked together using programmable interconnections.
Several topologies of programmable interconnect like the
Manhattan mesh based FPGAs [3], the hierarchical FP-
GAs [1, 7, 13], and the hierarchical mesh architecture [5,
12] have been proposed. These investigations present the
networks characteristics and how they scale.
Driven by Moore’s law semiconductor scaling, larger and
larger FPGAs emerge. Current architectures will not ex-
tend directly to this scale (the one-million gate and more)
because routing requirement and delays grow linearly. In
addition, placement and routing computational times are
ever increasing nowadays. Excessive FPGA placement and
routing runtimes are now often measured in hours.
Design of large devices imposes radical efficient change in ar-
chitecture to improve speed, density and software mapping
time. Relying on industry experience with standard ASICs,
we believe that partitioning and hierarchy becomes an un-
avoidable for hardware and software developments. As an
alternative we propose a new multilevel hierarchical FPGA
(MFPGA) architecture where logic blocks and routing re-
sources are sparsely partitioned into a multilevel clustered
structure.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD 06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011...$5.00.

In this paper we examine the state of the art and then we de-
tail our proposed architecture and preliminary results using
specific tools. Next section describes the state of the art and
compares traditional symmetric manhattan mesh with hier-
archical architectures. Section 3 describes our new MFPGA
architecture and evaluates its wiring and switch requirement
growth. In section 4 we propose suitable techniques to place
and route the MFPGA with experimental results using the
specific tools.

2. PREVIOUS WORKS
Mesh is the most studied and used industrial topology.

This approach has been the subject of considerable pub-
lished work by Rose et al. [3]. Mesh is a regular structure in
Island style. It consists of an array of logic blocks with I pins
in each side, which can be linked together by uniform hor-
izontal and vertical programmable routing channels. Each
routing channel contains W wire tracks. Each pin of the
logic block may be connected to a Fc fraction of the wire
tracks in the adjacent routing channel through a connec-
tion box. A switch box is located at vertical and horizontal
channels crossings. Each track entering the switch box may
connect Fs tracks (here we treat the case of depopulated
switch box such as ’subset’ or ’universal’ [3]).
There is little published research on Hierarchical FPGA
(HFPGA) architecture [13, 7, 1]. Part of the reason is that
industrial leaders use the manhattan mesh architecture. In
a hierarchical FPGA , logic blocks and routing resources
are organized into levels. At each level there are blocks and
routing resources belonging to that level. A leveli cluster
has Wi IO (Input/Output) wire tracks and contains a set
of k leveli−1 clusters connected with leveli switch box. A
common way to compare both architectures is the wiring
requirement using Rent’s Rule [8].

IO = cNp

This empirical relationship links the number of IO with the
N gates of a design. For our case of FPGA, N corresponds
to the number of logic blocks linked together. c is a constant
factor that corresponds to the IO size of the logic block, and
p defines the growth rate of the rent’s rule.
Thanks to this rule and the bisection method presented
in [7], DeHon [5] links the channel width parameters W of

a mesh arranged as
√

N ∗ √
N logic blocks to the Rent pa-

rameters. Therefore the Rent’s Rule provides a lower bound
of W to support a design characterized by Rent parameters
(c, p)

W ≥
“ c

2p

”
Np−0.5 (1)

Since we know the topology of the mesh architecture and
its specific parameters, we can deduce the total number of
switches per logic block in a mesh

Nswitch = 4W (FcI + Fs) = O(W) = O(Np−0.5) (2)

The number of wire per logic block :

Nwire = O(W) = O(Np−0.5) (3)

Rent’s Rule is easily adapted to hierarchical structure. A
level i cluster contains ki logic blocks and therefore has ckip

IO. Hence:

Wi = ckip (4)

Nwire =

O(logk(N)) if p = 1
O(1) if p < 1

(5)

As the k-HFPGA uses full cross bar switch boxes, the switch-
ing requirement is evaluated as follow:

Nswitch =

8<
:

O(N2p−1) if p > 0.5
O(logk(N)) if p = 0.5
O(1) if p < 0.5

(6)

Equations (6) and (5) compared respectively to equations
(2) and (3) show that k-HFPGA has more efficient switching
and wiring area that grows as O(1) if p < 0.5. When p >
0.5 the mesh architecture becomes more interesting. Mesh
switching and wiring area grows as O(Np−0.5) while the k-
HFPGA switching resources diverge and grows as O(N2p−1).
Unfortunately for the k-HFPGA, a large number of authors
observe that typical designs have 0.5 ≤ p ≤ 0.75. Thus the
mesh architecture is still more efficient.
We note that the above k-HFPGA is penalized by the use
of a full cross bar switch box that guarantee arbitrary, full
connectivity, thus overestimating the required number of
switches. In spite of its low logic density, the k-HFPGA
retains the advantage of lower routing delays. There is a
strong reduction concerning the average number of crossed
switches to connect two logic blocks. The worst case is pro-
portional to the number of levels in the tree O (logk(N)).
Both Agarwal [1] and Lai [7] described hierarchical FPGA
interconnect architectures with a sparse depopulated switch
box. Both topologies tend to depopulate the switch pat-
terns while maintaining 100% routability or at least the
same routability as the depopulated linear mesh architec-
ture. Tsu [13] describes the HSRA architecture based on the
butterfly architecture that needs fewer switches than in the
other cases. In general, such binary tree is a limiting inter-
connect structure that leads to severe routing inefficiencies.

3. PROPOSED ARCHITECTURE
We propose a new reprogrammable Multilevel hierarchi-

cal FPGA (MFPGA) architecture, designed to have very
low cost compared to traditional FPGA. The main moti-
vation for the new architecture is to achieve the best area
efficiency by balancing interconnect and logic block utiliza-
tion. In [4] DeHon answers the question ”Is an FPGA with
higher LUT usage more area efficient than one with lower
LUT utilization ?” and concludes that we must under-utilize

first resource in order to fully use the other. Since the rout-
ing resources consume most of the area (often 80-90%), we
focus on interconnect check. This suggests that mapped
circuits will be routed sparsely on the interconnect, leaving
many logic blocks unused.
All networks presented in the previous section use bidirec-
tional switches and wire tracks. This introduces consider-
able complication in both hardware network design and ef-
fort deployed by routing tools. Innovation in this new ar-
chitecture consists in the use of unidirectional switches. We
distinguish two networks:

• The downward network inspired from SPIN [6], based
on the Butterfly Fat-Tree(BFT) style interconnect [9]
with linear populated and unidirectional switch boxes.
The leaves of the hierarchy are logic blocks.

• The upward network that connects the logic blocks
outputs and the Input Pads to the different levels of
the Downward Network .

Each logic block contains one 4-input Look-Up-Table (4-
LUT) followed by a bypass Flip-Flop. This 4-LUTs is shown
to be the most efficient K-LUT for SRAM based FPGAs by
J.Rose et al in [2].
We use the Rent’s parameters to specify the bandwidth
growth for each network.
We assume that p is the same for both networks. Likewise,
as mentioned previously we use logic blocks whith 4 inputs
and 1 output. According to Rent’s Rule, if we are limited to
one logic block, Nin = cin(1)p inputs and Nout = cout(1)

p

outputs. Thus we obtain both values of c:
- c = 4 for the downward network.
- c = 1 for the upward network.

3.1 The Downward Network
A configuration of a n level MFPGA can be described us-

ing the expression N0 x N1 x N2 x....x Nn−1. Let’s take
the example of a 4x4x4 MFPGA architecture with 64 logic
blocks.
This is a 3 levels Downward Network (or BFT tree) with
the following parameters: p = 1 and k = 4 (the arity of the
BFT).
The lowest cluster shown in figure 1 is composed essentially
of 4 Logic Blocks (LBs) and one switch box composed of 4
Mini Switch Boxes (MSBs). Each MSB is in charge of the
interconnection between the upper level and one input of
each logic block.
Thus the MSB has 4 outputs and, as we deal with unidi-

MSB MSB MSB MSB

Inputs Inputs Inputs Inputs

LB LB LBLB

Figure 1: Downward Network in the Level 0 Cluster

rectional wires, they are composed of 4 multiplexers, one for

each output.
This cluster has 4 Logic Blocks so it must have cin ∗ (k)p =
4 ∗ 41 = 16 inputs distributed on the four MSBs.
In the same manner we create the level1 cluster. We connect
4 level0 clusters to one Switch Box. As the level0 cluster has
16 inputs, we divide the level1 switch box in 16 MSB. Each
MSB has 4 outputs, each output will be connected to one
level0 cluster input. This super cluster contains 16 Logic
Blocks so it has cink2p = 64 inputs shared out among the
16 MSBs.
The last level is created likewise : We connect 4 level1 clus-
ters to one switch block. As each level1 cluster has 64 inputs,
we divide the Switch Block in 64 parts and connected each
to one input of each level1 cluster.

3.2 The Upward Network
The Downward Network gives one path from each wire-

source in the top to each leaf (logic block) in the lowest level.
Now what can be the source ? Of course it will be a logic
block output or an input pad.
Let us begin with the logic block output. How to connect
the output of a logic block to the input of another one ?
We just have to bring the logic block output signal to a spe-
cific upper level (the lowest authorized level is the lowest
level common to the two logic blocks), then the signal can
go down to the targeted logic block through the BFT. We
name these signals feedbacks. If we chose p = 1, the number
of outputs in a level0 cluster corresponds to the number of
logic block in this cluster. We therefore connect each output
to one MSB at each level. Therfore each logic block output
will be connected to n different MSBs, one in each level (n
is the number of level).
The way we distribute the feedbacks between levels has an
important impact on the structure routability. Connect-
ing a feedback to n MSBs with different indexes increases
the paths from one source to one destination. We did it as
simply as possible and we define the solution presented in
figure 2-(a). This feedbacks distribution gives different pos-
sibilities to reach a destination. Since we can permute the
logic block inputs, the goal is to reach the destination logic
block on any input pin. Figure 2-(b) shows how the logic
block ’A’ output can reach the logic block ’B’. Each level
offers one path from ’A’ to ’B’, the three paths reach three
different ’B’ input pins. All input pins of the logic block are
similar since we use a LUT. It is easy to adapt the LUT
mask to any permutation of the four LUT inputs.

3.3 Connections with the Outside
Both Input pads (In) and Output pads(Out) are clustered

with the logic block at level0. In the Example of 4x4x4 we
use 64 Input and 64 Output. Thus each level0 cluster con-
tains 4 Inputs and 4 Outputs.
The number of IO pads per cluster can be varied to obtain
the best design fit. We use a local interconnect between the
logic block outputs and the output pads. Furthermore we
can connect the Output pads to the downward network. To
reduce complexity, we eliminate the last case at this stage.
Concerning input pads, we connect them to the upward net-
work just as the logic blocks outputs. Input pads can reach
any local logic block directly through the local switch box,
and can reach other logic blocks through common levels.
Figure 3 shows the topology used in the 4x4x4 MFPGA with

MSB MSB MSBMSB

MSB MSB MSBMSB

MSB MSB MSBMSB

C
lu

st
er

 le
ve

l 0

MSB MSB MSBMSB

MSB MSB MSBMSB

MSB MSB MSBMSB

C
lu

st
er

 le
ve

l 0

C
lu

st
er

 le
ve

l 1

C
lu

st
er

 le
ve

l 2

~
~

~
~

~
~

~
~

(b)

C
lu

st
er

 le
ve

l 1

C
lu

st
er

 le
ve

l 2

~
~

~
~

~
~

~
~

(a)

LBLBLBLB LB LB A B

Figure 2: The Impact of the Upward Network

4 Input pads and 4 output pads in each level0 cluster. Be-
cause in the 4x4x4 MFPGA we don’t introduce constraints
on the outputs placement, and the number of output pads is
equal to the logic block number, we connect each logic block
output to one output pad.
The overall MFPGA with p = 1 and k = 4 is given in Fig.3.

3.4 Rent’s Rule based MFPGA model
As we parametrized our architecture we can now evaluate

the number of wires and switches per logic block. Consider
a k-arity MFPGA as depicted above with N Logic Blocks
and whose wire growth follows the Rent’s Rule. Each Logic
Block has cin inputs and cout outputs.
A leveli cluster contains Nin(i − 1) MSB with k outputs

and Nin(i)+kNout(i−1)
Nin(i−1)

inputs. If we assume that the MSB

are full cross bar device and have an upper bound on the
switches number, we have k(Nin(i) + kNout(i− 1)) switches
in the switch box of a leveli cluster. As we have N

ki leveli
clusters in the overall structure we have a total number of
switches of :

logk(N)−1X
i=0

kN
Nin(i) + kNout(i − 1)

ki

Nout(−1) = cout is the number of outputs of a Logic Block.

Following (4), we have Nin(i) = cink(i+1)p and Nout(i) =

coutk
(i+1)p.

The Number of switches per Logic Block is :

Nswitch = k

logk(N)−1X
i=0

(kpcin + kcout)k
i(p−1)

Nswitch =

(
k(kpcin + kcout)

1−Np−1

1−kp−1 if p �= 1

k(kpcin + kcout) logk(N) if p = 1

Nswitch =

O (1) if p < 1
O (logk(N)) if p = 1

(7)

Here we don’t take into account the switches (per logic
block) needed by the local interconnect for the output pads.
Their number is negligible since it is in O (io ratio). io ratio
is the number of IO pads per level0 cluster.
For each leveli cluster, (kNout(i − 1) + kNin(i − 1)) wires

A B C D 00000 0 0 0

W Y ZX 0000 0000

A 00 B 00C 00 D 00

W00 X00Z00Y00

A B C D

W X Y Z

A B C D

W X Y Z

B C DA

W X Y Z

3

3

3

3

3

3

3

3

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

A B C D

W Y ZX

A B C D

W X Y Z

A B C D

W X Y Z

B C DA

W X Y Z

3

3

3

3

3

3

3

3

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1111111111111111000000000000

MSB MSB

MSB MSB

MSB MSB

~
~

Level0

Level1

Level2

Level1

LB LB LB LB LB LB LB LB LB LB LBLB LB LB LB LB LB LB LB LB LB LB LB LB LBLB LB LB

OutOut

In In

Out Out

InIn

Out Out Out Out

InInInIn

Out Out Out Out

InInInIn

OutOutOutOut

In In In In

LB LB

OutOut

In In

Out Out

InIn

Out Out Out Out

InInInIn

Out Out Out Out

InInInIn

OutOutOutOut

In In In In

LB LB

Figure 3: Three level MFPGA structure with k = 4 and p = 1

are connected to the MSB. Thus the total number of wires
per block is:

Nwire =

logk(N)−1X
i=0

(cin + cout)k
1+i(p−1)

Nwire =

(
(cin + cout)k

1−Np−1

1−kp−1 if p �= 1

(cin + cout)k logk(N) if p = 1

Nwire =

O (1) if p < 1
O (logk(N)) if p = 1

(8)

Equations (7) and (8) show that both switch and wiring
requirement grow more slowly than in traditional architec-
tures described in section. 2. These results are encouraging
for the construction of very broad MFPGA structures espe-
cially when p is less than one. But this does not mean that
our MFPGA topology is more efficient than other architec-
tures since they do not have the same routability. The best
way to check this way is to launch experimental work and
compare the area results using MFPGA and the Manahttan
FPGA.

4. EXPERIMENTAL RESULTS
As explained previously our routing resources are limited

and we have a few different ways to connect a source to a
destination. Consequently the placement of the cells has an
important impact on the netlists routability. In fact most
part of the effort will be devoted to the placement phase,
which is done in two steps. First we apply a global place-
ment. The aim of this phase is to balance the nets to route
between clusters. It consists of a multilevel clustering and a
multilevel refinement phases. Second in each level we run a
detailed placement to select slots that will be occupied inside
clusters. We adopted a particular iterative rip-up algorithm
based on congestion negotiation called PathFinder [11] for
the routing phase. Methods and algorithms used for place-
ment and routing phases are described in [10].
To validate and study the performance of our tools, we
placed and routed a set of MCNC benchmark circuits. As
shown in table 1 results are very promising since we were
able to route circuits that occupies until 77% of the logic

area.
We use the same benchmark circuits to compare the switch
and area requirements between our MFPGA architecture
and traditional mesh topology. The mesh is similar to the
vpr422 challenge arch architecture with uniform routing with
single-length segments and a subset switch box. Each Logic
Block contains only one 4-LUT. One input appears on each
side, and the output appears on the top and the right side.
Both inputs and outputs are fully populated (Fc = 1), and
IO pads are fully populated too.
We use the channel minimizing VPR 4.3 router to route the
mesh, and we vary the IO ratio to achieve the optimal ar-
ray size.
VPR choose the optimal size as well as the optimal chan-
nel width needed to place and route each benchmark. For
the MFPGA we choose a structure large enough to support
the benchmark circuit. MFPGA structures can be varied by
changing the level number, the arity of each level. Rent’s
parameters p is fixed at 1.
In both cases the number of switches needed by each bench-
mark corresponds to the total number of switches used by
the overall optimal target architecture.
We compare the areas of both architectures using succes-
sively a simple cost model based on routing switch counts,
and a more refined model that more accurately estimates
effective circuit area. The mesh area is the sum of its ba-
sic cells areas like SRAMs, Tri-states and multiplexers. The
same evaluation is made for the MFPGA, composed pri-
marily of SRAMs and Multiplexers. We use the same cells
library for both architectures.
Table 1 summarizes the basic results for the Mesh and for
the MFPGA.
Given a benchmark of some fixed size, and performing an
experiment of MFPGA with specified parameters, we get
results as summarized in the right part of table 1. Column
9 shows the occupation average of each circuit in the target
MFPGA. There is a low occupation average in the major-
ity of the benchmarks. This is due to the depopulation of
the interconnect. As mentioned previously we under-utilize
the logic resources in this type of structure. In addition,
size of smallest MFPGA that can contain the circuit under
investigation is penalized due to the coarse granularity of
this architecture. In spite of these constraints we achieve a

Benchmark Mesh MFPGA p = 1

Name LUTs
√

N W IO Switches Area (λ2) Arch Occup- Routing Switches Area (λ2)
ratio number x103 ation% success% number x103

b1 4 2 3 2 300 1284 4 100 100 32 288
cm138a 9 3 4 2 824 3344 4x4 56 100 512 2032
cm42a 10 4 3 1 948 4344 4x4 63 100 512 2032
pcle 29 6 5 2 3700 15316 4x2x2x4 46 100 3584 11968

decod 32 6 4 1 2768 11822 4x4x4 50 100 3584 11648
cc 33 6 5 2 3700 15316 4x4x4 52 100 3584 11648

count 37 7 5 2 4950 20577 4x4x2x2 58 100 4096 12608
my adder 49 7 4 2 3960 16680 4x4x4 77 100 3584 11648

b9 61 8 5 4 7020 28656 4x4x4 96 98 3584 11648
i4 110 11 7 5 18298 71289 4x4x4x4 42 100 20480 46080

c2670 363 20 8 5 63968 249172 4x4x4x4x4 35 100 106496 299008
i9 471 22 8 2 72480 286356 4x4x4x4x4 46 100 106496 299008

alu4 584 25 8 1 91568 363547 4x4x4x4x4 57 100 106496 299008
tseng 1085 33 9 1 178758 709785 4x4x4x4x4x2 53 100 253952 679936

Table 1: Benchmark statistics

gain in area efficiency compared to the mesh architecture.
Columns entitled ”Switches number” and ”Area” in table 1
show the difference in number of switches and total area in
Mesh and the MFPGA structures respectively.

It is clear from this comparison that the new architecture
will be more efficient in terms of area if we can increase the
Logic utilization. We see that for a low occupation aver-
age of the logic resources(LBs), the whole MFPGA device
is smaller than its equivalent mesh since it requires less in-
terconnect. In other hand, as the occupation grows, the
routing complexity grows and needs more resources.

5. CONCLUSION
This paper describes a new hierarchical multilevel MF-

PGA architecture. We show that good balancing of LUT
utilization and interconnect utilization implies lower area
than the traditional Mesh.
The preliminary results fully indicate that we meet the ca-
pacity and performance targets.
The new topology based on two hierarchical unidirectional
networks seems more robust and can achieve better speed
than symmetrical FPGA architectures. The average path
length between two LBs grows as logk(N) for an MFPGA
whereas it is O(N) for a Mesh.
The downward network is a predictable interconnect, due to
unicity of the downward path leading to destination. This
particularity yields a very interesting benefit for the routing
phase.
Our analysis does not cover all possible cases, specially for
larger arity k = 8 or k = 16 and Rent’s parameter p < 1.
This is still a fertile research area for this new MFPGA ar-
chitecture.

6. REFERENCES
[1] A. Aggarwal and D. Lewis. Routing Architectures for

Hierarchical Field Programmable Gate Arrays. Proc.
1994 IEEE. Int. Conf. Computer Design, October
1994.

[2] E. Ahmed and J. Rose. The Effect of LUT and
Cluster Size on Deep-Submicron FPGA Performance

and Density. IEEE, 2003.

[3] V. Betz, A. Marquardt, and J. Rose. Architecture and
CAD for Deep-Submicron FPGAs. Kluwer Academic
Publishers, January 1999.

[4] A. DeHon. Balancing Interconnect and Computation
in a Reconfigurable Computing Array (or, why you
don’t really want 100% LUT utilization). Proc.
FPGA, Montery, CA, February 1999.

[5] A. DeHon. Unifing Mesh and Tree-Based
Programmable Interconnect. IEEE Transactions on
VLSI Systems, IEEE Transactions on VLSI
Systems(12):10, October 2004.

[6] P. Guerrier and A. Greiner. A generic architecture for
onchip packet-switched interconnections. Proceedings
of the Design Automation and Test in Europe
Conference 2000 (DATE 2000), Paris, France, page
250 256, Mars 2000.

[7] Y. Lai and P. Wang. Hierarchical Interconnection
Structures for Field Programmable Gate Arrays.
IEEE Transactions on VLSI Systems, 5(2), June 1997.

[8] B. Landman and R. Russo. On Pin Versus Block
Relationship for Partition of Logic Circuits. IEEE
Transactions on Computers, 20(1469-1479), 1971.

[9] C. Leiserson. Fat-trees: Universal networks for
hardware efficient supercomputing. IEEE Transactions
on Computers, C-34(10):892–901, October 1985.

[10] Z. Marrakchi, H. Mrabet, and H. Mehrez. A new
Multilevel Hierarchical MFPGA and its suitable
configuration tools. Proc. ISVLSI-2006, Karlsrhue,
Germany, March 2006.

[11] L. McMurchie and C. Ebeling. Pathfinder: A
Negotiation-Based Performance-Driven Router for
FPGAs. Proc.FPGA’95, 1995.

[12] R. Rubin and A. DeHon. Design of FPGA
interconnect for multilevel metallization. IEEE Trans.
VLSI Syst, 12:1038–1050, Oct 2004.

[13] W. Tsu. et al. HSRA: High Speed, Hierarchical
Synchronous Reconfigurable Array. Proceedings of the
International Symposium on Field Programmable Gate
Arrays, pages 125–134, February 1999.

