
Mesh of Tree: Unifying Mesh and MFPGA for Better Device Performances

Zied Marrakchi, Hayder Mrabet, Christian Masson and Habib Mehrez
LIP6, Université Pierre et Marie Curie
4, Place Jussieu, 75252 Paris, France

zied.marrakchi@lip6.fr

Abstract

In this paper we present a new clustered mesh FPGA
architecture where each cluster local interconnect is imple-
mented as an MFPGA tree network [6]. Unlike previous
clustered mesh architectures, the mesh of tree allows us to
consider large clusters sizes (thanks to MFPGA depopu-
lated local interconnect). Experimentation shows that we
obtain a reduction of 14% in switches number and 2 times
in the placement and routing run time. Furthermore, com-
pared to MFPGA, the mesh of tree achieves full routability
of all MCNC benchmarks since we can easily control both
clusters LUTs occupation and mesh channel width.

1. Introduction

Modern Mesh FPGA architectures are based on a clus-
tered architecture, where a number of lookup tables (LUTs)
are grouped together to act as the configurable logic block.
The motivation of using clusters is manifold: to reduce area,
to reduce critical-path delay, and to reduce CAD tool run-
time [2] [3]. This trend is followed by some FPGAs from
Xilinx (the Virtex and Spartan families) and Altera (the
Stratix and Cyclone families). All of these FPGAs are based
on clusters of 4-input lookup tables. In some FPGAs, such
as Altera’s APEX family, these internal cluster connections
are fully populated or fully connected. This is equivalent to
employing a full crossbar: a crosspoint switch exists at in-
tersection point of every LUT input and every cluster input
or feedback connection. Such a high degree of connectivity
makes routing easier, but it has significant area overhead.
This penality is increasing especially in the case of archi-
tectures with high clusters sizes.
Our previous studies of MFPGA architecture [6] showed
that it leads to better logic density than mesh especially for
small benchmark circuits. We have improved the placement
strategy to enhance routability and to target benchmark cir-
cuits with higher occupation than those considered in [8].
Despite our efforts we found that the proposed architecture

M
S
B

M
S
B

M
S
B

M
S
B

LB

LB

LB

LB

S Block

Disjoint

Figure 1. Mesh of Tree

cannot deal with circuits exceeding 80% of logic blocks oc-
cupation. To deal with both architectures drawbacks we
propose in this work to use the MFPGA sparse intercon-
nect as an alternative switch matrix inside the Mesh clus-
ters. Since clusters size is limited, the MFPGA intercon-
nect topology seems to be an interesting local interconnect,
which allows us to control the logic occupation inside each
cluster.
In this paper section 2 presents a description of the Mesh
of Tree architecture. First it presents the mesh intercon-
nect level and then the local cluster interconnect which is
similar to the MFPGA connecting networks. Section 3 de-
scribes the configuration flow to implement a netlist on the
presented architecture. It insists on challenges for perform-
ing place-and-route inside clusters (MFPGA). In the exper-
imentation section, based on MCNC benchmark, we com-
pare the Mesh of Tree architecture to the common clustered
mesh in term of switches number requirement.

2 Mesh of MFPGA Architecture

The architecture that we propose has a mesh of tree inter-
connect topology. It starts with a mesh of nodes and builds



CLB CLB CLB CLBC C C

CSCSCSC

CSCSCSC

CLB CLB CLB CLBC C C

CLB CLB CLB CLBC C C

L : Logic Block C : Connection BoxS : Switch Box

CLB CLB CLB CLBC C C

CSCSCSC

W

Figure 2. Mesh architecture

a separate hierarchical network along each row and column
cluster. The resulting network corresponds to a mesh of
clusters where each local interconnect is equivalent to a MF-
PGA interconnect. Figure 1 shows a cluster local intercon-
nect (here with a simple one level MFPGA topology) and
how it is connected to other clusters. We can consider that
netlist implementation on this architecture can be run in two
stages:

- Mesh stage: In this stage clusters are considered as
black boxes with i inputs and j outputs. The initial
netlist is partitioned into N independent sub-netlists
where N corresponds to the number of clusters of the
mesh architecture.

- MFPGA stage: Each one of the N sub-netlists is
mapped seperately in a cluster. Since cluster local in-
terconnect is similar to MFPGA hierarchical intercon-
nect, clusters will be referred as MFPGA.

Then the clusters netlist is placed and routed on the mesh
using VPR. In the following, both architecture stages and
their corresponding tools will be described.

2.1 Mesh routing interconnect

As shown in figure 2 mesh-based architecture is com-
posed of clustered logic blocks (CLB), switch blocks (S),
connection blocks (C), and I/O blocks. Interconnection be-
tween clusters is formed by the C and S blocks, comprising
the horizontal and vertical routing channels. The C block is
the region where the CLB input and output pins connect to
the routing channels. The S block is where connections are
made between the horizontal and vertical routing channels,
allowing nets to turn corners or extend farther along the
channel. Each routing channel contains W parallel tracks
of wires, where W is called the channel width. The same
width is used for all channels. The cluster inputs are con-
nections from the external routing, carrying signals from
other clusters into this one.

MSB MSBMSB MSB MSB MSBMSB MSBMSB MSBMSB MSBMSB MSBMSB MSB

MSB MSB MSB MSBMSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB

LB LB LBLB LB LB LBLB LB LB LBLB LB LB LBLB

L
e
v
e
l 
1

L
e
v
e
l 
2

Figure 3. Downward Network

2.2 MFPGA routing interconnect

The MFPGA hierarchical interconnect were described
previously in [6]. In the following we present a more de-
tailed description which will be very useful to extract ar-
chitecture routing constraints and to present challenges on
performing place-and-route.
MFPGA contains LUT-based logic blocks and two unidi-
rectional connecting networks. Logic Blocks (LBs) and
interconnect are organised into levels. Let nb� denote the
number of levels of a given architecture. In each level we
have a set of clusters, and C denotes the set of clusters in
all levels. A cluster with index c belonging to level � is
noted by cluster(�, c). Each cluster(�, c) where � ≥ 1 con-
tains a set of MSBs (Mini Switch Boxes) and 4 sub-clusters.
Sub-clusters of cluster(�, c) are cluster(� − 1, 4c + i)
where i ∈ {0, 1, 2, 3}. The MSB with index m belong-
ing to cluster(�, c) is denoted MSB(�, c, m) where m ∈
{0, . . . , 4� − 1}. Each MSB contains 4 inputs driven by the
upper level and 1 feedback coming from a leaf output pin.
Each cluster in level � contains nbMSB(�) = 4�. Each
cluster in level 0 is denoted cluster(0, c) or leafcluster(c)
and corresponds to the Logic Block (LB) and contains
4 inputs, 1 output, no MSBs and no sub-cluster. Each
cluster(�, c) where � < nb� − 1 has an owner in level �′

where �′ > � denoted cluster(�′, c ÷ 4(�′−�)). We define
for each cluster(�, c) a position inside its owner in level
� + 1 (direct owner) by the following function:
pos : C −→ {0, 1, 2, 3}
cluster(�, c) �−→ c mod 4
Two clusters belonging to level � and having the same owner
at level �+1 have two different positions. To get the cluster
owner in level �′ of cluster(�, c) (� < �′ ≤ nb� − 1) we
define the function:
owner : C × IN −→ C
(cluster(�, c), �′) �−→ cluster(�′, c ÷ 4�′−�)



C
lu

st
er

 le
ve

l 0

MSB MSB MSB MSB

C
lu

st
er

 le
ve

l 2

(a)

C
lu

st
er

 le
ve

l 1

MSB MSB MSB MSB

MSB MSB MSB MSB

~
~

~
~

~
~

~
~

C
lu

st
er

 le
ve

l 0

MSB MSB MSB MSB

C
lu

st
er

 le
ve

l 2

(b)

C
lu

st
er

 le
ve

l 1

MSB MSB MSB MSB

MSB MSB MSB MSB

~
~

~
~

~
~

~
~

LBLB LB LB LBLBA B

Figure 4. Upward Network

2.2.1 Downward Network

Figure 3 shows a sparse downward network based on uni-
directional MSBs. The downward interconnect topology is
similar to the butterfly fat tree. Each MSB of a cluster(�, c)
where � > 1 is connected to each sub-cluster in one and
only one input pin. We say an MSB(�′, c′, m′) is the
successor of an MSB(�, c, m) where 0 < �′ < � if
there is a downward directed path from MSB(�, c, m) to
MSB(�′, c′, m′). The path between an MSB and its suc-
cessor is unique.
We define the function:
Modi : IN −→ IN
m �−→ m mod nbMSB(i)
Thus each MSB(�, c, m) has a successor in each sub-
cluster belonging to level �′ MSB(�′, c′, m′) where 0 <
�′ < �, with:

m′ = Mod�′ ◦ · · · ◦ Mod�−1(m) (1)

2.2.2 Upward Network

We propose to connect the output signals of leaf clusters to
specific MSBs of upper levels. Thus for each logic block
output, we define a list of feedbacks. Each one enables the
output to reach an MSB in a particular level. The way feed-
backs are distributed has an important impact on the struc-
ture routability. Connecting an output of a leaf cluster to
MSBs with different indexes increases the number of paths
from a source to a destination. This specific distribution is
described in figure 4-(a). Figure 4-(b) shows how the clus-
ter leaf ’A’ output can reach the cluster leaf ’B’ inputs using
different paths. Each leaf cluster cluster(0, c) is connected
to one and only one MSB(�, c′, m) in level � > 0. c′ is the
index of the owner of cluster(0,c) in level �: c′ = c÷ 4�; m
is given by:{

m = (pos(cluster(0, c)) + � − 1) mod 4+∑�−1
=1 pos(owner(cluster(0, c), )) × nbMSB()

(2)

MSB MSB MSBMSB MSB MSB MSBMSB

Local InterconnectLocal Interconnect

In In

LBLB LB LB

Out Out

LBLB LB LB

Out Out

Figure 5. Connection with outside

MFPGA 
Partitioning Partitioning

MFPGA 

Mesh Partitioning

Main Netlist

MFPGA 
Partitioning

MFPGA 
Partitioning

Detailed
Placement

Detailed
Placement

Detailed
Placement

Detailed
Placement

Routing Routing Routing Routing

Pins Reordering

VPR:Place & Route

MFPGA
flow

Figure 6. Mesh of Tree configuration flow

2.2.3 Connection with outside

Output pads are clustered with the logic blocks at level0.
The number of output pads per cluster can be varied to ob-
tain the best design fit. We use a local interconnect between
the logic block outputs and the output pads. Input pads are
connected directly to MSBs of the highest level. In this way
each Input pad can reach all logic blocks. To add flexibility,
as shown in figure 5, an input pad can be connected to more
than one MSB. This enables pads to reach logic blocks from
different paths and in different pins.

3 Configuration flow

In the following we present the different steps to imple-
ment a netlist on the Mesh of Tree architecture.

3.1 Mesh partitioning

The purpose of the partitioning step is to distribute netlist
instances between mesh architecture clusters (subdomains)
in order to reduce external communication (cut) and con-
gestion. Since we have a balanced mesh interconnect (the
same width is used for all channels), it is both mandatory
to match cluster I/O resources and worthwhile to spread the
congestion over all the interconnect. Despite the success
of multilevel algorithms [5] in producing partitionings in



which the cut is minimized, this cut is not uniformly dis-
tributed across the different subdomains. That is, the num-
ber of hyperedges that are being cut by a particular subdo-
main (referred to as the Subdomain Degree) may be signif-
icantly higher than that of other subdomains. Therefore it
is of great importance to produce partitioning solutions that
minimize the cut but also minimize the Maximum Subdo-
main Degree (MSD). To address this problem we developed
a multi-objective partitioning tool, in which the MSD is the
highest priority objective and the cut is the second highest.
We implemented a solution similar to the direct multi-phase
refinement presented in [10]. Here, using hMetis tool, we
first generate a partitioning solution with the cut as an ob-
jective, next we apply a multi-phase multi-objective refine-
ment with MSD as the highest priority objective. After main
netlist partitioning, we obtain a clusters netlist and N sub-
netlists each one describing how LBs must be connected
inside each cluster. In figure 6 the main netlist is partitioned
into 4 sub-netlists targeting a clustered mesh architecture
with 4 clusters. Each sub-netlist is mapped separately using
the MFPGA configuration flow. Then, after a pin reordering
of the inter-clusters netlist (in order to match pin assignem-
nts done at each MFPGA level), this netlist is mapped using
VPR place and routing tool.

3.2 MFPGA placement

The MFPGA placement problem can be stated as assign-
ing to each netlist cell a logic block (leaf) in the MFPGA
architecture. The way how cells are distributed has an im-
portant impact on routability. In fact once cells are placed,
the router tries to find a path to connect a source LB (clus-
ter leaf) to its destinations LBs (cluster leaf) using archi-
tecture resources. Thanks to the interconnect predictibility
provided by this MFPGA architecture we can introduce, in
the placement phase, some conditions to limit later conflicts
in the routing phase.

3.2.1 Conflict conditions

Definition 1 There is a resource conflict problem in level
� if 2 leaf clusters (or more), such as cluster(0, c) and
cluster(0, c′) reach a cluster(�, c′′) on the same pin p.

Property 1 The owner in level � + 1 of cluster(�, c′′) has
one and only one MSB(� + 1, c′′ ÷ 4, m) which can reach
this cluster(�, c′′) on pin p.

Definition 2 Referring to the previous property, the defini-
tion 1 can be stated as:
There is a resource conflict problem in level � if 2 leaf clus-
ters (or more) such as cluster(0, c) and cluster(0, c′) try
to reach a cluster(�, c′′) and have both already reached its
owner cluster(�+1, c′′÷4) at the same MSB(�+1, c′′÷
4, m).

Cell3

Netlist

Cell0

Cell1

Placed Netlist

Cluster(0,9)

Cluster(0,5)

Cell2

Cell4

Cluster(0,10)Cluster(0,18)

Cluster(0,3)

Figure 8. Netlist to route

From definition 2, we can detect a resource conflict by
finding 2 leaf clusters reaching the owner cluster of a des-
tination in the same MSB. We consider that cluster(0, c)
reaches cluster(�, c′′) in MSB(�, c′′, m) using the level
�up, and that cluster(0, c′) reaches the same cluster
destination in MSB(�, c′′, m′) using level �′up. ¿From
equation (2) and (1) in this order we get:




m = (pos(cluster(0, c)) + �up − 1) mod 4 +∑�−1
=1 pos(owner(cluster(0, c), )) × nbMSB()

m′ = (pos(cluster(0, c′)) + �′up − 1) mod 4 +∑�−1
=1 pos(owner(cluster(0, c′), )) × nbMSB()

(3)
thus,



m = m′

�
(pos(cluster(0, c)) + �up)[4] = (pos(cluster(0, c′)) + �′up)[4]
pos(owner(cluster(0, c), )) = pos(owner(cluster(0, c′), ))

∀ ∈ {1, . . . , � − 1}
(4)

Proof : Equations (3) correspond to the decomposition
of m and m′ in the base 4 because:
- 0 < (pos(cluster(0, c)) + �up)[4] < 4
- 0 < pos(owner(cluster(0, c), )) < 4 ∀j, c
- nbMSB() = 4

Therefore we obtain results presented in equation (4).

Lemma 1 We say 2 leaf clusters cluster(0, c) and
cluster(0, c′) are in conflict to drive a common destination
cluster(�, c′′) if and only if:


pos(cluster(0, c)) − pos(cluster(0, c′)) = (�′up − �up)[4]
pos(owner(cluster(0, c), )) = pos(owner(cluster(0, c′), ))

∀ ∈ {1, . . . , �}

3.2.2 Placement example

We refer to the netlist presented in figure 8. We pro-
pose to place cells as shown in figure 7. In this
example cell0, cell1, cell2 and cell3 are placed re-
spectively in cluster(0, 9), cluster(0, 5), cluster(0, 10),



A B C D A B C D B C DA 333322221111 B D 00000 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1CAA B C D 00000 0 0 0

MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB

MSB MSB MSB MSB MSB MSB MSB MSB

MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB

MSB MSB MSB MSBMSB MSB

MSB MSB

MSB MSB MSBMSB

MSB

MSB

Cluster(2,0)

Cluster(3,0)

Cluster(1,1) Cluster(1,2) Cluster(1,3) Cluster(1,4)

Cluster(2,1)

(1,2,0)

MSB MSB MSB(2,0,0)

MSB MSB MSB(1,1,0)

MSB MSBMSB(3,0,16)

MSB

~~
~

~

Cluster(1,0)

LB LBLB LB LB LB LB LB LB LBCell0 LBLB LBCell1 Cell2LB LBCell4 Cell3

Figure 7. Detailed placement example

cluster(0, 18), and cluster(0, 3).
Referring to the clustered netlist, cluster(0, 18) and
cluster(0, 3) have a common destination cluster(0, 5) at
level 0.
cluster(1, 2) and cluster(1, 1) are also two common des-
tinations at level 1. We check now referring to Lemma 1
whether there is a resource conflict to connect both sources
to the three destinations. We propose to use the lowest pos-
sible level to connect a source to its destinations. To reach
cluster(0, 5), cluster(0, 3) must go up to level 2 (�up = 2)
and cluster(0, 18) to level 3 (�′up = 3).
Since pos(cluster(0, 3)) = 3 and pos(cluster(0, 18)) =
2, we get pos(cluster(0, 3))−pos(cluster(0, 18)) = �′up−
�up. Thus the condition of lemma 1 is satisfied and there is
a resource conflict in level 0 to reach cluster(0, 5). The
second common destination is cluster(1, 2). To reach this
destination, cluster(0, 3) must be connected up to level 2
(�up = 2) and cluster(0, 18) to level 3 (�′up = 3).
Since pos(cluster(0, 3)) = 3 and pos(cluster(0, 18)) =
2, we get pos(cluster(0, 3)) − pos(cluster(0, 18)) =
�′up − �up. Thus the first condition in lemma 1 is sat-
isfied. We check now the second condition of lemma 1
since destination cluster(1, 2) belongs to level 1 (� >
0). We have owner(cluster(0, 3), 1) = cluster(1, 0) and
owner(cluster(0, 18), 1) = cluster(1, 4) .
Since pos(cluster(1, 0)) = pos(cluster(1, 4)) = 0 the
second condition of lemma 1 is verified too. Thus there
is a resource conflict at level 1 to connect cluster(0, 3) and
cluster(0, 18) to cluster(1, 2).
We have the same problem with the third common destina-
tion cluster(1, 1). The routing solution of the placed netlist
using the lowest levels is presented in figure 7. The dashed
arrows present the resource conflicts. To prevent resource
conflicts we propose:
- To change positions of the leaf cluster sources.

- To change positions of the sources owners in level 1.
When we try to resolve a congestion problem to reach a
destination we can introduce unexpected problems to reach
other destinations. The aim of the following sections is to
present a method to model all placement constraints and to
perform the optimal positions assignement.

3.2.3 Partitioning

The way in which we distribute logic blocks between MF-
PGA clusters has an important impact on routing congestion
reduction. Based on the upward interconnect specificity we
notice that the number of different paths to connect a source
to a destination depends on their enclosing clusters. If they
are packed in the same cluster, the source can use more lev-
els to reach its destination and therefore more paths. From
this remark we can consider that the netlist cut reduction is
an important factor for routability improvement.
A second partitioning objective is deduced from routability
conditions presented in Lemma 1. Let us consider 2 leaf
sources cluster(0, c) and cluster(0, c′) driving a common
destination cluster(0, c′′). If we pack both sources in the
same cluster we obtain on the one hand �up − �′up = 0 (�up

is the lowest used level to reach the destination). On the
other hand we get
pos(cluster(0, c)) − pos(cluster(0, c′)) 	= 0. In this case
referring to Lemma 1, the conflict condition is not verified
and no resource conflict occurs.
To include this objective in the clustering technique, we
propose to construct a Cells Constraints Graph (CCG). The
CCG denoted as Gn = (V, En) consists of a set of vertices
and weighted edges derived from the netlist. An edge is
established between two vertices when they drive the same
destination cluster, which are called adjacent. Each edge
contains a weight equal to the number of common destina-
tions between two adjacent vertices. Using only this graph



C0 C4

C2

C1

C0

C2

C3

C4

C5

Constrained Hypergraph

Netlist hypergraph

Cell Constraints Graph

C1

C0

C2

C3

C4

C5

C1

11

1

2

1

12

1

1

1

1

1

Figure 9. CCH: Cell Constraints Hypergraph

shift = 1
Level = 0 Level = 1

shift = 1

Cell 3

shift = 3
Level = 0

shift = 3

Cell 4

Level = 1

Figure 10. ACCG: Advanced Cell Constraints
Graph

in the partitioning weakens the obtained clusters netlist re-
sults in term of external communication. To take this in con-
sideration, we propose, as presented in figure 9, to generate
from the initial netlist hypergraph and the CCG a new Con-
strained Cells Hypergraph CCH. In this hypergraph, ver-
tices are cells (as in the netlist) and it contains all hyper-
edges of the netlist and all edges of the CCG. This con-
strained hypergraph is partitioned by hMetis and objectives
priority will be defined by hyperedges weights.
We propose to use a top-down patitioning approach (global
connectivity informations). We first construct clusters of
the top level and then each cluster is partitioned into sub-
clusters. This is done until the bottom of the hierarchy is
reached. To run partitioning we used hMetis [5] since it
generates a good solution in a short time due to its multi-
phase refinement approach.

3.2.4 Detailed placement

If during detailed placement we take lemma 1 in account,
significant gain can be obtained in term of routability
and congestion reduction. For this purpose we introduce
the Advanced Cells Constraints Graph (ACCG) which is
associated to a given a multilevel clustered netlist (previous
section) and a placement problem.

Advanced Cell Constraints Graph:
We can say that an ACCG is a CCG that contains extra

cells partitioning informations required to check conditions

of Lemma 1. An ACCG denoted as Gn = (V, En)
consists of a set of vertices and directed edges derived from
the netlist and the way its cells are partitioned between
clusters in each level, where each vertex corresponds to
a cell of the netlist. A pair of opposite directed edges is
established between two vertices when they drive the same
destination cluster (located at any level), which are then
called adjacent. To be able to verify conditions proposed
in lemma 1, we need to add some informations to the
constraints graph. Those informations are stored in each
directed edge connecting two adjacent vertices as a list of
pairs (shift, level), featuring:
- The forbidden shift between adjacent vertices positions.
shift = (�up − �′up) mod 4.
- The level where is located the common destination cluster.
It is worthwhile to use the lowest level feedback link to
connect a source to its destination, since it has an important
impact on delay reduction. That’s why when we construct
the ACCG as described in figure 11, �up corresponds to
the lowest level where the source has to go up to reach its
destination. Reducing the conflict between sources using
the lowest level is beneficial for the first routing iteration.
In fact, as explained in [8] we use an iterative rip-up routing
algorithm based on the congestion negotiation. We assign
an adjustable cost to each feedback. A lower level induces
lower cost; consequently in the first routing iteration,
signals will be routed using the lowest levels. Using the
lowest levels to construct the ACCG has two advatages:
- Fewer switches will be crossed to route signals.
- A good initial solution for the iterative router exists: first
iteration is run with the least number of resource conflicts.

Figure 10 presents the Advanced Cell Constraints Graph

for each leaf cluster cl
for each level l

for each receiver rc of cl in level l
for each leaf driver dr of rc

//cl and dr both drive rc
(*) if rc has no common subreceiver of dr and cl

if No edge between cl and dr
create edge e between cl and dr

end if
level = GetLevel(rc)
shift = ShiftCompute(cl,dr,rc)
append pair(shift,level) to e

end if
end for

for
for

for

Figure 11. ACCG construction

constructed from the placed netlist in figure 8. In line (*)



Figure 12. Moves range limiters

of the algorithm, we test whether the common receiver rc
has already a sub-cluster (slave) which is also a common
receiver of cl and dr. This verification is important to
avoid computing many times the same conflict to reach a
destination. In fact the conflict can occur when reaching
the destination or its owners. In the netlist described in
section 3.2, we have a conflict driving cluster(0, 5) and
its owner cluster(1, 1). In the routing phase this conflict
will be considered only once. That is why in the generated
ACCG we append in the edge only the couple (1, 0)
corresponding to destination cluster(0, 5) and the couple
(1, 1) corresponding to destination cluster(1, 2), but we do
not append the couple (1, 1) corresponding to destination
cluster(1, 1). In addition referring to lemma 1, If there is
no conflict to reach cluster(l, c), there will be no conflict
to reach any one of its owners.

Simulated Annealing technique:
A detailed placement consists in assigning a position for

each cell and each cluster of cells inside its owner. The
objective is to reduce the number of resource conflicts. To
compute this number we take each vertice in the ACCG
and we check whether conditions of lemma 1 are verified,
if such the global cost function is incremented by 1.
Computing this cost for a specific detailed placement is
given by the pseudo-code of figure 13. The cost is updated

cost = 0
for each vertice v

mark vertice v visited
for each adjacent vertice adj of v

if adj was not visited
for each couple (level,shift)

(*) if conflict(v,adj,shift,level)
cost++

end if
end for

end if
end for

end for

Figure 13. Incremental cost computing

incrementally in the sequel.
To check whether there is a resource conflict (*), we
must check conditions of lemma 1. To do this we need
informations about the first source position, the second
source position (adjacent), the forbidden shift and the
destination level. All those informations are provided by
the ACCG.
To find the best detailed placement combination we propose
to use an adaptive simulated annealing algorithm [7] [1]. In
this algorithm the operating parameters are controled using
statistical techniques.
Moves are randomly applied to the configuration and con-
sist in assigning new positions. First we choose randomly
an element to be moved, it can be a basic cell or a cluster of
cells (located at any level). Second we choose randomly the
new position inside the direct cluster owner, if it is occupied
we swap both elements positions. The cost function is
updated incrementally by evaluating the incremental cost
of the moved vertices and their adjacents. Moving a cells
cluster is important referring to lemma 1 and can lead
to cost reduction. In this case, since the ACCG vertices
correspond only to basic elements, we update the cost by
visiting all basic elements of the moved cluster and their
adjacents. We adopt a hard windowing move restriction
approach. As presented in figure 12, a cell or a cluster
can only move inside its direct owner. This restriction is
important to keep constant the partitioning result obtained
by the tool described in section 5. In addition, by respecting
this restriction, we do not have to update the ACCG since
the common receivers and the levels to use to reach them
always remain the same. This yields important run time
reduction for the cost updating phase.

3.2.5 Logic replication

The idea behind logic replication is that by making copies
of one or more logic cells, one can maintain the logical be-
havior of a netlist while, hopefully, enabling additional opti-
mization. Consider a logic cell a and suppose that we have
created a duplicate cell a′. The cell a′ takes precisely the
same inputs as a and produces exactly the same boolean
function of those inputs as its output. In this situation, the
pins in the circuit that need to receive this signal may now
obtain it from either the output of a or a′. This adds free-
dom and enhances routability since it enables to reach des-
tination cells using additional routing resources. In addi-
tion if we place the duplicate logic block a′ inside the su-
per cluster (owner) containing the original logic block a,
we will not add routing congestion to connect a′ inputs.
This means that logic replication must be done after orig-
inal logic blocks partitioning. Thus we have to estimate
which are logic blocks that need to be duplicated before



partitioning to reserve vacant positions and depopulate the
containing clusters. To consider this we use the CCG graph
to attribute weights to logic blocks. Logic block weight is
equal to the number of its adjacent vertices in the CCG.
Vertices weights are added to the CCH hypergraph and the
partitioner will distribute vertices and controle clusters pop-
ulation based on these informations. Once logic blocks are
partitioned between clusters, we run the detailed placement.
After the last placement iteration we define logic blocks ar-
rangement inside clusters and we evaluate the number of
conflicts that will occur in the first routing iteration. Using
the ACCG we can easily identify logic blocks (drivers) lead-
ing to these conflicts and duplicate them inside their clus-
ters owners. When the routing iterations are progressing,
the router can use the duplicate logic blocks to reach some
destinations.

3.3 MFPGA routing

Once netlist logic blocks are placed, the router tries to
connect signals using MFPGA interconnect resources. As
explained in [8], the router is an adaptation of pathfinder [9].
Since the placement objective is to minimize resources con-
flict number in the first routing iteration, the router will start
with a good initial solution (the first iteration consists in
conecting a source to a destination using the lowest level).
In the next iterations, the router will try to resolve conflicts
using higher levels (congestion negotiation)

3.4 Pins reordering

As we do not have a full crossbar inside clusters (MF-
PGA topology), inputs and outputs cannot be considered as
logically equivalent. As presented in figure 6, each sub-
netlist is placed and routed seprately. In the detailed place-
ment phase, sub-netlist inputs/outputs are assigned to spe-
cific cluster inputs and outputs pins (MFPGA input pads
placement). This new ordering must be back annotated in
the clusters interfaces of the inter-clusters netlist. The pins
ordering constraint is very penalizing in the clusters netlist
routing (see next section). To alleviate the effect of this pe-
nality we provide groups of equivalent cluster input pins.
Input pins (MFPGA Input pads) are equivalent if they drive
the same MSBs. For example if we consider the cluster
presented in figure 1 we notice that it contains four groups
of logically equivalent input pins. Each group is composed
of 3 inputs connected to the same MSB. To enhance inter-
clusters routability we distribute the equivalent pins over the
four cluster sides.

3.5 Mesh placement and routing

To place and route the clusters netlist we use VPR
tool [4]. After clusters placement, VPR achieves routing

with the lowest channel width. Having some equivalent
cluster pins gives more flexibility to the router and has an
important impact to reduce channel routing width.

4 Experimental results

To evaluate architectures and tools performances, we
placed and routed some of the largest MCNC benchmark
circuits.

4.1 MFPGA routability evaluation

First we evaluated the efficiency of MFPGA flow and es-
pecially placement phase. It is a real challenge to perform
place-and-route on MFPGA especially with high LUTs oc-
cupation. We want to check whether the new iterative de-
tailed placement technique (presented in section 3.2.4) can
improve routability compared to the constructive technique
presented in [8]. In table 1 we present the effect of both
placement techniques (iterative and constructive) on circuits
routability. We notice that constructive technique is ineffi-
cient with circuits with high occupation. It fails with cir-
cuits with occupation more than 50%. The iterative tech-
nique is more efficient and can deal with circuits having
until 80% of occupation. To deal with circuits having high
occupation is also important in the case of Mesh of Tree ar-
chitecture since it allows to pack a higher number of LUTs
into each cluster and consequently to reduce external com-
munication and the number of clusters in the mesh level.
This has an important impact on area reduction.

4.2 Mesh of Tree vs Mesh

We use the same benchmark circuits to compare switches
requirement between Mesh of Tree and clustered Mesh ar-
chitectures. The clustered mesh architecture uses a uniform
routing with single-length segments and a disjoint switch
box. Each cluster logic block contains four 4-LUTs. 10
inputs and 4 outputs are distributed over the cluster sides.
LUTs pins are connected to cluster pins using a full lo-
cal crossbar. For connection blocks (C), Fc = O.5 and
Fcout = 0.25 are chosen. These switch density choices
are made to be consistent with previous work [2]. We use
t-vpack to construct clusters and the channel minimizing
router VPR 4.3 to route the mesh. VPR chooses the opti-
mal size as well as the optimal channel width to place and
route benchmark circuits. Concerning the mesh of Tree ar-
chitecture, mesh interconnect level is uniform with single-
length segments and disjoint switch box. Each cluster con-
tains 256 4-LUTs. The choice of the optimal number of
clusters inputs/outputs is not obvious and depends on the
complexity of netlist to implement. When we examine the



largest MCNC benchmark we notice that they can be di-
vided into two categories: those with low interconnect uti-
lization (such as s38417, s38584.1 and bigkey) and those
with high interconnect utilization (such as spla and pdc).
Based on this remark we propose to target two different
Mesh of Tree architectures:

- Architecture with clusters having 64 inputs and 64 out-
puts to implement circuits with low interconnect uti-
lization.

- Architecture with clusters having 128 inputs and 64
outputs to implement circuits with high interconnect
utilization.

In both cases input pins are divided into groups of 4 pins.
In each group those four input pins are logically equivalent
(connected to the same MSBs). To give more flexibility to
the external router, the four equivalent pins are distributed
over the 4 cluster sides. Since we do not have a full equiv-
alence between input pins we use an external interconnect
with full flexibility: Fc = 1.

As shown in table 2 we placed and routed the same
benchmark circuits on both architectures. All circuits were
totaly routed. In fact in the case of the Mesh of Tree archi-
tecture, we can control clusters occupation with the mesh
partitioner (section 3.1). Concerning the external mesh in-
terconnect, VPR chooses the minimum channel width.
In both cases we have computed the required switches num-
ber by each architecture. In the case of the Mesh of Tree we
obtain better density and the number of the switches is re-
duced by 14% compared to the mesh.
As cluster size is limited (< 256), the MFPGA flow run
time is very short (about 10 s). We can consider that this
is the required time to place and route logic blocks inside
clusters, since this can be done separately (in parallel). In
addition, since the clusters size of the Mesh of Tree is 64
times bigger than in the case of clustered Mesh, the netlist
that must be placed and routed by VPR is smaller in term of
instances and nets number. This explains why the run time
in the case of the Mesh of Tree was two times reduced.

4.3 Partitioning objectives comparison

As explained in section 3.1, the mesh partitioning strat-
egy has an important impact on inter-clusters routing phase.
In table 3 we present a comparison between a partitioning
minimizing the cut and a partitioning which considers both
the cut and the Max Subdomain Degree (MSD). In the last
case we notice that the MSD is reduced by 9% and the CUT
is increased by 1.5%. It means that the external commu-
nication is slightly increased and the congestion is better
distributed. Consequently we obtain a 4% reduction in the
mesh routing channel width.

5 Conclusion

In this work we have shown that, for MFPGA, by fo-
cusing most of the effort on the placement phase, the pre-
dictability of the hierarchical interconnect allows us to ob-
tain good routability results despite depopulated routing re-
sources. In fact we succeeded to route netlists up to 80%
LUTs occupation (and less than 2K LUTs). This has led
us to propose an architecture that unifies the merits of MF-
PGAs and Mesh architectures. This architecture is called
Mesh of Tree and ensures routability of all MCNCs bench-
marks (thanks to the mesh channel width flexibility) while
being 14% smaller in term of switches number.
Notice that solving independently intra-clusters (MFPGA
level) and inter-clusters (Mesh level) is penalizing. Indeed,
performances can be significantly improved by a better in-
teraction between these two designs flows (at the pins as-
signement level). Therefore, we can consider our results as
a lower bound of the the quality of the proposed architec-
ture. The Mesh of tree can be very promising architecture
especially when we target very large netlists implementa-
tion (> 20K LUTs).

References

[1] Aarts, Debont, and Habers. Statistical cooling: A general
approach to combinatorial optimisation problems. Philips
Journal, pages 193–226, 1985.

[2] E. Ahmed and J. Rose. The effect of LUT and cluster size on
deep-submicron FPGA performance and density. Proceed-
ings of the International Symposium on Field Programmable
Gate Arrays, pages 3–12, 2000.

[3] V. Betz, A. Marquardt, and J. Rose. Architecture and CAD
for Deep-Submicron FPGAs. Kluwer Academic Publishers,
January 1999.

[4] V. Betz and J. Rose. VPR: A New Packing Placement and
Routing Tool for FPGA research. International Workshop
on FPGA, pages 213–22, 1997.

[5] G.Karypis and V.Kumar. Multilevel k-way hypergraph par-
titioning. Design automation conference, 1999.

[6] H.Mrabet, Z.Marrakchi, P.Souillot, and H.Mehrez. Perfor-
mances improvement of FPGA using novel multilevel hier-
archical interconnection structure. ICCAD, San Jose, 2006.

[7] Kirkpatrick, Gelatt, and Hecchi. Optimisation by simulated
annealing. Science 220, pages 671–680, 1983.

[8] Z. Marrakchi, H. Mrabet, and H. Mehrez. A new Multilevel
Hierarchical MFPGA and its suitable configuration tools.
Proc. ISVLSI, Karlsruhe, Germany, March 2006.

[9] L. McMurchie and C. Ebeling. Pathfinder: A
Negotiation-Based Performance-Driven Router for FPGAs.
Proc.FPGA’95, 1995.

[10] N.Selvakkumaran and G.Karypis. Multi-objective hyper-
graph partitioning algorithms for cut and maximum subdo-
main degree minimisation. IEEE transactions on computer
aided design, 2005.



Constructive iterative
circuits LUTs arch occup R% R-Time R% R-Time

% (s) (s)
i9 471 4x4x4x4x4 46 100 2 100 18

alu4 584 4x4x4x4x4 57 100 2 100 24
C5315 725 4x4x4x4x4 69 90 3 100 42
tseng 1047 4x4x4x4x4x2 51 100 3 100 60
ex5p 1064 4x4x4x4x4x2 51 98 9 100 180
apex4 1262 4x4x4x4x4x2 61 95 12 100 420
dsip 1370 4x4x4x4x4x2 66 93 5 100 120

misex3 1379 4x4x4x4x4x2 68 91 5 100 150
diffeq 1497 4x4x4x4x4x2 73 90 5 100 210
bigkey 1707 4x4x4x4x4x2 80 88 11 100 240
apex2 1878 4x4x4x4x4x2 90 88 10 94 630
s298 1931 4x4x4x4x4x2 94 86 23 96 600
frisc 3556 4x4x4x4x4x4 86 82 25 93 900
spla 3690 4x4x4x4x4x4 90 82 20 93 1020

Table 1. MFPGA detailed placement evaluation

Clustered Mesh Mesh of Tree
Cluster size 4 Cluster size 256

MCNC LUTs arch Switches R-Time arch Switches R-Time
Benchmark Number Clusters ×103 (s) clusters ×103 (s)

s38417 6406 41 x 41 1269 218 8 x 4 992 36
s38584 6447 41 x 41 1236 273 8 x 4 1090 74
bigkey 1707 21 x 21 358 27 3 x 3 291 16
clma 8383 46 x 46 2123 625 9 x 5 1841 273
pdc 4575 34 x 34 1251 326 7 x 5 1097 311

ex1010 4589 34 x 34 1007 215 5 x 5 990 106
spla 3690 31 x 31 912 172 5 x 4 925 80
frisc 3556 34 x 34 1108 150 5 x 4 971 115

apex2 1878 22 x 22 404 54 3 x 4 415 25

Table 2. Clustered Mesh vs Mesh of Tree

Partitioning Partitioning
CUT obj CUT & MSD obj

MCNC LUTs Clusters MSD CUT Channel MSD CUT Channel
Benchmark Number number width width

s38417 6406 32 99 664 52 99 664 52
s38584 6447 32 107 840 61 94 960 59
bigkey 1707 9 86 425 60 76 433 54
clma 8383 45 150 1317 98 122 1352 90
pdc 4575 35 166 1029 135 158 1099 135

ex1010 4589 25 135 1043 77 130 1085 76
spla 3690 20 171 684 105 146 709 100
frisc 3556 18 167 488 111 161 520 109

apex2 1878 10 142 353 72 132 365 67

Table 3. Partitioning objectives comparison


