
Efficient Tree Topology for FPGA Interconnect Network

Zied Marrakchi, Hayder Mrabet, Emna Amouri and Habib Mehrez
LIP6, Université Pierre et Marie Curie
4, Place Jussieu, 75005 Paris, France

zied.marrakchi@lip6.fr

ABSTRACT
This paper presents an improved Tree-based architecture
that unifies two unidirectional programmable networks: A
predictible downward network based on the Butterfly-Fat-
Tree topology, and an upward network using hierarchy. Stud-
ies based on Rent’s Rule show that switch requirements
in this architecture grow slower than in traditional Mesh
topologies. New tools are developed to place and route sev-
eral benchmark circuits on this architecture. Experimental
results show that the Tree-based architecture can implement
MCNC benchmark circuits with an average gain of 54% in
total area compared with Mesh architecture.

Categories and Subject Descriptors
B.6.1[Logic Design]: Design Styles

General Terms
Design, Experimentation, Performance

Keywords
FPGA, Hierarchy, Interconnect, Rent’s rule, Routing

1. INTRODUCTION
Up to 90% of a Field Programmable Gate Array (FPGA)

chip is occupied by the programmable interconnect, includ-
ing wires, switches and configuration bits. Modern Mesh
FPGAs use clustering to improve the area and delay ef-
ficiency of the routing architecture [3][9]. This shows that
partitioning and hierarchy become unavoidable for hardware
and software developments. A multilevel hierarchical FPGA
(MFPGA) architecture, where logic blocks and routing re-
sources are sparsely partitioned into a multilevel clustered
structure, were presented in [7]. Authors proved that this ar-
chitecture has better density than common VPR-style Mesh
architecture [3]. Nevertheless, the Tree based architecture
cannot implement highly congested netlists. In this work we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’08, May 4–6 2008, Orlando, Florida, USA.
Copyright 2008 ACM 978-1-59593-999-9/08/05...$5.00.

S S S S

Logic Blocks

S

W0

Figure 1: Upward and downward networks

propose an improved MFPGA architecture interconnect to
get better routability without degrading area efficiency.
Next section describes the improved Tree-based architecture
(MFPGA) and evaluates its switches requirement growth.
In section 3 we propose suitable techniques to place and
route netlists on the Tree-based architecture. Finaly, based
on the largest MCNC benchmarks implementation, we eval-
uate architecture routability and we compare its area effi-
ciency to the common VPR-Style Mesh architecture.

2. TREE-BASED INTERCONNECT
In a previous work [7] a first hierarchical Multilevel FPGA

architecture (MFPGA) was designed and experimentally eval-
uated. As presented in figure 1, this architecture unifies
two unidirectional networks. The downward network has a
”Butterfly Fat Tree” topology and allows to connect Switch
blocks to LBs (leaves) inputs. The upward network uses a
limited connectivity Tree to connect LBs outputs to Switch
Blocks. While providing good flexibility and some inter-
esting features like an almost predictible routing once the
placement is defined, this approach revealed some drawbacks
hindering highly congested netlists routing:

• The very depopulated upward network, which only al-
lows each LB output to reach any destination through paths
as the number of levels in the hierarchy, is detrimental for
highly congested netlists.

• The placement of clusters (or LBs) inside their owner
cluster critically controls available routing resources, thus
limiting the freedom to re-arrange them and making impos-
sible to construct carry chains in this type of architecture.

321

LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB

UMSB

DMSB DMSB DMSBDMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB

DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB

UMSB UMSB UMSB

UMSB UMSB UMSB UMSB

IN

cluster

OUT

cluster

DMSB

Output PadsInput Pads

level 1

level 2

Figure 2: Tree-based interconnect: upward and downward networks

2.1 Interconnect improvement
To alleviate those weaknesses we propose to add routing

flexibility by modifying specifically the upward network. We
propose, as shown in figure 2, to add Upward Mini Switch
Boxes (UMSB). These UMSBs allow LBs outputs to reach a
larger number of Downward MSBs (DMSBs). The UMSBs
are organized in a way that allows logic blocks (LBs) be-
longing to the same “owner cluster” (at level 0 or above) to
reach exactly the same set of DMSBs at each level. There-
fore, we can ensure the following points:

• Pads, clusters or logic blocks positions inside the direct
owner cluster become equivalent and we need no more to
re-arrange them.

• The interconnect offers more routing paths to connect a
net source to a given sink. In this case we are more likely to
achieve highly congested netlists routing. In fact, while in
the previous architecture each LB output had only a fixed
number of reachable DMSBs per level, with the new upward
network, LBs can negotiate with their siblings the use of a
larger number of DMSBs. This is more efficient for mapping
netlists since instances can have different fanout sizes. For
example in figure 2, an LB ouput can reach all 4 DMSBs
of its owner cluster at level 1 and all the 16 DMSBs of its
owner cluster at level 2.

2.2 Interconnect depopulation
When we add UMSBs in the upward network, the number

of architecture switches increases. This can be compensated
by the reduction of in/out signals bandwidth of clusters in
each level. In fact Rent’s rule [8] is easily adapted to Tree-
based structure:

IO = c.k
`.p (1)

Where ` is a Tree level, k is the cluster arity, c is the number
of in/out pins of an LB and IO the number of in/out pins
of a cluster situated at level `.
Intuitively, p represents the locality in interconnect require-
ments. If most connections are purely local and only few
of them come in from the exterior of a local region, p will
be small. In Tree-based architecture, both the upward and
downward interconnects populations depend on this param-
eter. As shown in figure 3, we can depopulate the routing
interconnect by reducing from 16 to 12 the number of inputs
in each cluster of level 1 and outputs from 4 to 3 (p = 0.79).
This induces a reduction from 16 to 12 of the number of

DMSBs in each cluster of level 2 and the UMSBs number
from 4 to 3. In this case, if we consider an architecture with
2 levels of hierarchy, we get a reduction of the interconnect
switches number from 521 to 416 (19%). By doing so the
architecture routability is reduced too. Thus we have to
find the best tradeoff between interconnect population and
logic blocks occupancy. Dehon showed in [5] that the best
way to improve circuit density is to balance logic blocks and
interconnect utilization. In the proposed architecture, the
logic occupancy factor is controled by N , the leaves (LBs)
number in the Tree. N is directly related to the number of
levels and the clusters arity k.

2.3 Connection with outside
As shown in figure 2, output and input pads are grouped

into specific clusters. The cluster size and the level where
they are located can be modified to obtain the best design
fit. Each input pad is connected to all UMSBs of the upper
level. In this way each input pad can reach all LBs of the
architecture with different paths.
Similarly, output pads are connected to all DMSBs of the
upper level; in this way they can be reached from all LBs
through different paths. As one can notice, in/out pads have
higher interconnection flexibility than LBs.

2.4 Rent’s Rule Based Model
Based on the Rent’s rule presented in equation (1), we

evaluate the Tree architecture switches requirement.

2.4.1 The Downward Network Model
Clusters situated at level ` contain Nin(` − 1) DMSB

with k outputs and Nin(`)+kNout(`−1)
Nin(`−1)

inputs. If we assume

that the DMSB are full crossbar devices, we get k(Nin(`) +
kNout(`− 1)) switches in the switch box of a level ` cluster.
Since we have N

k` clusters in level `, we get a total number
of switches, related to the downward network, given by:

logk(N)
X

`=1

k × N ×
Nin(`) + kNout(` − 1)

k`

Nout(0) = cout is the number of outputs of a Basic Logic
Block. Following equation (1), we get Nin(`) = cin.k`.p and

Nout(` − 1) = cout.k
(`−1)p.

322

LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB

UMSB

DMSB DMSB DMSBDMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB

DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB

UMSB UMSB UMSB

UMSBUMSBUMSB

12 inputs and
Cluster with

3 outputs

Level 1

Level 2

Figure 3: Tree-based interconnect depopulation based on Rent’s parameter (level 0 with p = 0.79)

The total number of switches used in the downward inter-
connect is:

Nswitch(down) = N × (kp
cin + kcout) ×

logk(N)
X

`=1

k
(p−1)(`−1)

2.4.2 The Upward Network Model
Clusters situated at level ` contain Nout(`−1) UMSB with

k inputs and k outputs. If we assume that the UMSB are
full crossbar devices, we get k2 ×Nout(`− 1) switches in the
switch box of a level ` cluster. As we have N

k` clusters in
level ` we get the total number of switches, related to the
upward network:

logk(N)
X

`=1

k2 × N

k`
× Nout(` − 1)

Nout(0) = cout is the number of outputs of a Basic Logic

Block. Following (1), we get Nout(` − 1) = cout.k
(`−1)p.

The total number of switches used in the upward intercon-
nect is:

Nswitch(up) = N × k × cout ×

logk(N)
X

`=1

k
(p−1)(`−1)

The total number of Tree-based interconnect switches is

Nswitch(Tree) = Nswitch(down) + Nswitch(up)

Nswitch(Tree) = N × (kp
cin + 2kcout) ×

logk(N)
X

`=1

k
(p−1)(`−1)

The number of switches per Logic Block is:

Nswitch(LB) = (kp
cin + 2kcout) ×

logk(N)
X

`=1

k
(p−1)(`−1)

Nswitch(LB) =

(

(kpcin + 2kcout) ×
1−Np−1

1−kp−1 if p 6= 1

(kpcin + 2kcout) × logk(N) if p = 1

Nswitch(LB) =

O (1) if p < 1
O (logk(N)) if p = 1

(2)

2.4.3 Comparison with Mesh Model
Concerning switches per logic block growth, it was estab-

lished in [5] that in the Mesh architecture:

Nswitch(LB) = O(Np−0.5) (3)

Equations (2) and (3) show that in the Tree-based architec-
ture, switches requirement grow more slowly than in com-
mon Mesh architecture. These results are encouraging for
constructing very large structures, especially when p is less
than 1. But this does not mean that our Tree-based topol-
ogy is more efficient than other architectures, since they do
not have the same routability. The best way to check this
point is through experimental work, in order to compare
area results, using Tree-based and the VPR clustered Mesh
FPGA.

3. CONFIGURATION FLOW
To explore the modified architecture we have to adapt the

configuration flow. Since logic blocks positions inside the
owner cluster are equivalent, the detailed placement phase
(Arrangement inside clusters) is eliminated.

3.1 Multilevel partitioning
The way how logic LBs are distributed between Tree clus-

ters has an important impact on congestion. It is worthwhile
to reduce external communications, since local connections
are cheaper in terms of delay, but also in terms of routabil-
ity, as it allows to get more levels (more paths) for con-
necting sources to destinations. Another way to decrease
congestion consists in eliminating competition between nets
sources reaching their sinks. This can be achieved by depop-
ulating clusters based on netlist instances fanout. Instances
with high fanout need more resources to reach their sinks.
Thus in the partitioning phase, instances weights are at-
tributed according to their fanout size.
We use a top-down recursive partitioning approach which
gives priority to global connectivity information. First, we
construct the top level clusters, then each cluster is parti-
tioned into sub-clusters, until the bottom of the hierarchy is
reached. To perform partitioning we used hMetis [6] since
it generates a good solution in a short time thanks to its
multi-phase refinement approach.

323

3.2 Routing
Once the netlist is partitioned into a tree of nested clus-

ters, we attribute randomly to each cluster a position inside
its owner (no detailed placement is required). The routing
problem consists in assigning the nets that connect placed
logic blocks to routing resources in the interconnect struc-
ture. The new topology of the upward interconnect adds
extra paths to connect a LB to a destination but eliminates
the predictability property. Hence we must model the rout-
ing resources as a directed graph abstraction G(V, E). The
set of vertices V represents the in/out pins of logic blocks
and the routing wires in the interconnect structure. An
edge between two vertices represents a potential connec-
tion between the two vertices. The routing algorithm we
implemented is “PathFinder” [10], which uses an iterative,
negotiation-based approach to successfully route all nets in
a netlist. During the first routing iteration, nets are freely
routed without paying attention to resource sharing. Two
terminal nets are routed using Dijkstra’s shortest path al-
gorithm [11], and multi-terminal nets are decomposed into
terminal pairs by the Prim’s minimum-spanning tree algo-
rithm [11]. At the end of an iteration, resources can be con-
gested because multiple nets use them. During subsequent
iterations, the cost of using a resource is increased, taking
into account the number of nets that share the resource, and
the history of congestion on that resource. Thus, nets are
made to negotiate for routing resources.

4. EXPERIMENTAL EVALUATION
To evaluate the proposed architecture and tool perfor-

mances, we place and route the largest MCNC benchmark
circuits, and consider as a reference the optimized clustered
Mesh (VPR-style) architecture. This reference architecture
uses an uniform routing with single-length segments and a
disjoint switch block. Each cluster logic block contains four
4-LUTs, 10 inputs and 4 outputs which are distributed over
the cluster sides. LUTs pins are connected to cluster pins
using a full local crossbar. Connection block population is
defined by Fcin

and and Fcout parameters, where Fcin
is

routing channel to cluster input switch density and Fcout is
cluster output to the routing channel density. Fcin

= 0.5
and Fcout = 0.25 are chosen to be consistent with previous
work [1]. The choice of segments length equal to 1 is due
to the fact that, in the proposed Tree architecture, we used
only segments of length 1 (no wires are crossing more than
one level). We use t-vpack [2] to construct clusters and the
channel minimizing router VPR 4.3 [4] to route the Mesh.
VPR chooses the optimal size as well as the optimal chan-
nel width W to place and route each benchmark circuits.
First we evaluate the efficiency of the new Tree-based ar-
chitecture to implement MCNC benchmark circuits. With
the previous MFPGA architecture [7], several of the largest
MCNC circuits were unroutable.
As shown in table 1, we achieved all the 20 MCNC largest
benchmarks routing. This illustrates the improvement in
routing flexibility provided by the new upward network.

4.1 Area Efficiency
We compared the area requirement between Tree archi-

tecture and the clustered VPR-style Mesh architecture to
implement these benchmarks. As explained in section 2.2,
routability and switches number depend on two parameters:

DMSB DMSBDMSBDMSB

LB LB LB

UMSB

LB LB LB LB LB

Figure 4: Cluster with arity 8 and p = 1

p (architecture Rent’s parameter) and N (number of LBs in
the architecture which defines occupancy ratio). To find the
best tradeoff between device routability and switches (area)
requirement we explored Tree-based architectures with var-
ious N and p parameters. The purpose was to find for each
netlist, the architecture with the smallest area that can im-
plement it. With our tools we can consider, in the same
architecture, levels with different p values. This is why in
table 1, we present the Rent’s average value.
Both Mesh and Tree architectures characteristics are pre-
sented in table 1. In the case of Mesh we adjust the channel
width W and for the Tree-based interconnect we adjust lev-
els Rent’s parameters in order to obtain the architecture
which best fits each benchmark.
In table 2, we observe that the Tree architecture has a bet-
ter density and can implement circuits with lower switches
number. An average of 59% reduction of the switches num-
ber is achieved. We achieve a 42% switches reduction in the
case of the “alu4” smallest circuit and 52% in the case of the
“clma” largest circuit. This confirms that Tree-based inter-
connect is very attractive for both small and large circuits.
We compare the areas of both architectures using a refined
estimation model of effective circuit area. The Mesh area is
the sum of its basic cells areas like SRAMs, Tri-states and
Multiplexers. The same evaluation is made for the Tree,
composed of SRAMs and Multiplexers. Both architectures
use the same cell symbolic library. As presented in table 2,
with the Tree we save 54% in the total area compared to
Mesh architecture.
The Tree architecture efficiency is due essentially to the abil-
ity to control simultaneously the logic blocks occupancy and
the interconnect population, based on respectively LBs num-
ber N and architecture Rent’s parameter p. For example in
the case of “apex2” circuit, we used an architecture with
a high logic occupancy (91%) and a high Rent’s parame-
ter p = 0.86. In the case of “alu4” circuit, we have a low
occupancy (57%) and we achieve routability with a low ar-
chitecture Rent’s parameter equal to 0.66.

4.2 Clusters Arity Effect
As one can notice, we have considered in table 1 Tree

architecture with clusters arity equal to 4. To get an idea
about arity effect on architecture density and performances,
as shown in table 3, we varied clusters arity and evaluated
for each benchmark circuit the required switches and wires
number and the resulting critical path. Since we have no
information about layout characteristics, we used a basic
model based on evaluation of the number of switches crossed

324

MCNC Clustered Mesh Tree architecture

benchmarks cluster size 4

Circuits LUTs IN OUT Arch Occup Channel Architecture Occup Rent’s
Names Number Pads Pads NxN % Width levels % p

alu4 584 14 8 13x13 86 32 4x4x4x4x4 57 0.66
apex2 1878 39 3 23x23 88 40 4x4x4x4x4x2 91 0.86
apex4 1262 9 19 19x19 87 42 4x4x4x4x4x2 61 0.79
bigkey 1707 263 197 21x21 96 28 4x4x4x4x4x2 83 0.79
clma 8383 61 82 47x47 94 51 4x4x4x4x4x4x4 51 0.77
des 3235 256 245 29x29 96 29 4x4x4x4x4x4 78 0.84

diffeq 1497 64 39 20x20 93 29 4x4x4x4x4x2 73 0.72
dsip 1370 229 197 19x19 95 31 4x4x4x4x4x2 67 0.81

elliptic 3604 131 114 31x31 94 41 4x4x4x4x4x4 87 0.84
ex1010 4589 10 10 35x35 93 43 4x4x4x4x4x4x2 56 0.77
ex5p 1064 8 63 17x17 92 44 4x4x4x4x4x2 51 0.77
frisc 3556 20 116 30x30 98 45 4x4x4x4x4x4 86 0.86

misex3 1397 14 14 20x20 87 36 4x4x4x4x4x2 68 0.84
pdc 4575 16 40 35x35 93 61 4x4x4x4x4x4x2 55 0.79
s298 1931 4 6 23x23 91 27 4x4x4x4x4x2 94 0.72

s38417 6406 29 106 41x41 95 37 4x4x4x4x4x4x2 78 0.70
s38584 6447 39 304 41x41 96 36 4x4x4x4x4x4x2 78 0.75

seq 1750 41 35 22x22 90 40 4x4x4x4x4x2 85 0.84
spla 3690 16 46 31x31 96 53 4x4x4x4x4x4 90 0.93
tseng 1047 52 122 17x17 90 27 4x4x4x4x4x2 51 0.79

Average 2998 82 88 92 38 72.9 0.79

Table 1: Netlists and architectures characteristics

MCNC Clustered Mesh Tree architecture Gain

Cluster size 4

Circuits SW SRAM Area (λ2) SW SRAM Area (λ2) SW SRAM Area (λ2)
×103

×103
×106

×103
×103

×106 % % %
alu4 100 74 319 47 43 182 53 41 42

apex2 506 375 1541 173 127 565 65 66 63
apex4 359 267 1092 138 103 466 61 61 57
bigkey 349 253 1056 129 101 450 63 60 57
clma 2541 1879 7672 1031 821 3614 59 56 52
des 667 487 2047 326 247 1087 51 49 46

diffeq 307 226 954 121 108 445 60 52 53
dsip 310 224 934 120 115 500 52 48 46

elliptic 944 701 2883 326 247 1087 65 48 62
ex1010 1234 915 3763 515 410 1804 58 55 52
ex5p 305 224 915 134 103 460 56 54 49
frisc 952 811 3287 346 254 1134 63 68 65

misex3 354 263 1085 163 123 541 53 53 50
pdc 1636 1207 4889 714 523 2329 56 56 52
s298 380 280 1192 121 108 445 68 61 62

s38417 1508 1126 4662 493 439 1807 67 60 61
s38584 1501 1113 4590 535 452 1898 64 59 58

seq 463 343 1411 163 123 541 64 64 61
spla 1144 847 3448 428 299 1350 62 64 60
tseng 216 157 665 126 100 442 41 36 33

Average 788 588 2420 362 280.6 1228.9 59 55 54

Table 2: Tree vs clustered VPR-style Mesh

Arity 4 Arity 8 Arity 16

Circuits SW SRAM Wires C-Path Arch SW SRAM Wires C-Path Arch SW SRAM Wires C-Path

×103 ×103 ×103 SW levels ×103 ×103 ×103 SW levels ×103 ×103 ×103 SW

apex2 173 127 43 86 8x8x8x4 198 120 27 62 16x16x16 291 114 22 48

apex4 138 103 35 82 8x8x8x4 204 111 28 54 16x16x8 232 103 19 40

clma 1031 821 267 152 8x8x8x8x4 1380 868 199 100 16x16x16x4 1814 854 150 80

dsip 147 115 37 34 8x8x8x4 137 92 20 22 16x16x8 248 104 18 16

ex5p 134 103 34 92 8x8x8x4 174 105 25 64 16x16x8 210 102 18 44

misex3 163 123 40 70 8x8x8x4 165 104 24 58 16x16x8 210 101 18 46

pdc 714 523 175 124 8x8x8x8x2 783 495 110 80 16x16x16x2 907 427 75 64

s38417 493 439 130 108 8x8x8x8x4 645 412 95 72 16x16x16x4 788 393 69 62

Average 491 337.8 126.7 134 604 372.6 85.1 98.4 795.4 352 63.6 77.5

Table 3: Architcture Arity Effect

325

Switches
x1000 x1000

Wires

cl
m

a

ap
ex

2

circuits

ds
ip

m
is

ex
3

ap
ex

4

ex
5p

50

100

150

200

pd
c

s3
84

17

250

b) Interconnect wire number

Switches
Critical Path Arity = 4

Arity = 8
Arity = 16

cl
m

a

ap
ex

2

m
is

ex
3

pd
c

s3
84

17

ds
ip

ap
ex

4

ex
5p

250

200

150

100

50

c) Critical path switch number

1000

1500

500

cl
m

a

2000

ap
ex

2

circuits

pd
c

ds
ip

s3
84

17

ap
ex

4

ex
5p

m
is

ex
3

a) Interconnect switch number

2500

circuits

Figure 5: Clusters arity effect

by the critical path to evaluate performances. We notice
that when we increase clusters arity, the required switches
number increases. When clusters arity increases, the re-
quired muxes get bigger and consequently the bound on area
efficiency goes down. For example, in the case of architec-
ture with clusters arity 4 we use muxes 4:1 and muxes 5:1.
With clusters arity 8, we use muxes 8:1 and muxes 10:1 (fig-
ure 4). As shown in figure 5, switches number is increased
by 23% when we increase clusters arity from 4 to 8.
When we increase clusters arity, the architecture levels num-
ber decraeses. Consequently multiplexers sizes increases and
their total number decreases. Thus the total number of wires
decreases. For example, as shown in figure 5, wire number
is reduced by 32% when we increase clusters arity from 4 to
8.
In terms of performance we notice that the number of switches
crossed by the critical path decreases when we increase arity.
With larger clusters arity, we can absorb more nets and com-
munication becomes local. For example when we increase
clusters arity from 4 to 8, the crossed switches number in
the critical path is reduced by 27%.

5. CONCLUSION
The improved Tree-based architecture significantly alle-

viates placement constraints and offers better routability.
Based on MCNC benchmark implementation, we showed
that the Tree-based architecture has better area efficiency
than the common VPR-Style clustered Mesh. Nevertheless,
this Tree-based architecture can be penalizing in terms of
physical layout generation, it does not support scalability
and does not fit with a planar chip structure, especially for
large circuits. Conversely, the Mesh and in particular the
Mesh of Tree (a Mesh where clusters local interconnect has
a Tree topologie) has a good physical scalability: once the
cluster layout is generated we can abut it to generate Mesh
layouts with the desired size and form factor. In a future
work we are interested to take advantage of both architec-
tures merits by unifying Mesh and Tree interconnects (Mesh
of Tree) to get better area efficiency and layout scalability.

6. REFERENCES
[1] E. Ahmed and J. Rose. The effect of LUT and cluster

size on deep-submicron FPGA performance and
density. Proceedings of the International Symposium
on Field Programmable Gate Arrays, pages 3–12, 2000.

[2] A.Marquart, V.Betz, and J.Rose. Using cluster-based
logic block and timing-driven packing to improve
FPGA speed and density. International symposium on
FPGA, Monterey, pages 37–46, 1999.

[3] V. Betz, A. Marquardt, and J. Rose. Architecture and
CAD for Deep-Submicron FPGAs. Kluwer Academic
Publishers, January 1999.

[4] V. Betz and J. Rose. VPR: A New Packing Placement
and Routing Tool for FPGA research. International
Workshop on FPGA, pages 213–22, 1997.

[5] A. DeHon. Balancing Interconnect and Computation
in a Reconfigurable Computing Array (or, why you
don’t really want 100% LUT utilization). Proc.
FPGA, Montery, CA, February 1999.

[6] G.Karypis and V.Kumar. Multilevel k-way hypergraph
partitioning. Design automation conference, 1999.

[7] H.Mrabet, Z.Marrakchi, P.Souillot, and H.Mehrez.
Performances improvement of FPGA using novel
multilevel hierarchical interconnection structure.
ICCAD, San Jose, 2006.

[8] B. Landman and R. Russo. On Pin Versus Block
Relationship for Partition of Logic Circuits. IEEE
Transactions on Computers, 20(1469-1479), 1971.

[9] D. Lewis and al. The stratix logic and routing
architecture. International Symposium on Field
Programmable Gate Arrays (FPGA 2003), pages
12–20, February 2003.

[10] L. McMurchie and C. Ebeling. Pathfinder: A
Negotiation-Based Performance-Driven Router for
FPGAs. Proc.FPGA’95, 1995.

[11] T.Cormen, C.Leiserson, and R.Rivest. Introduction to
algorithms. MIT Press, Cambridge, 1990.

326

