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1 Theorem 1 partial proof : Proofs of each

basic cases

s′ enriches s, K(Wi), s |= p ⇔ K(Wi+1), s
′ |= p, p

is an atomic proposition that is not concerned with
the increment.

Proof. (⇒) By definition, if s′ enriches s, s′ contains a
greater set of atomic propositions than s. As s |= p, p

being an atomic proposition of s, then p is an atomic
proposition of s′, hence s′ |= p.

(⇐) If p is not a property concerned with the incre-
ment and s′ ∈ SK(Wi+1) enriches s ∈ SK(Wi), then
K(Wi+1), s

′ |= p ⇒ K(Wi) |= p.

s′ enriches s, K(Wi), s |= EXp ⇔ K(Wi+1), s
′ |=

(e qt ∧ EXp) and p in APK(Wi).

Proof. (⇒) If s |= EXp, there exists a state t = (u, c) ∈
SK(Wi) such that s → t and t |= p. Let be a state s′

enriching s with e qt; by Corollary 1 item 2 there
exists t′ = (u′, c′) ∈ SK(Wi+1) such that s′ → t′,
u = u′, and proj(c′, Ii) = c. Hence K(Wi+1), t′ |= p

and K(Wi+1), s′ |= e qt ∧EXp.
(⇐) Let be K(Wi+1),s

′ |= e qt ∧EXp and s′ enriches s

with e qt; let be t′ = (u′, c′) such that s′ → t′ and
t′ |= p. By Corollary 1 item 4, there exists t = (u, c) ∈
SK(Wi), such that u = u′, and proj(c′, Ii) = c, then
as p ∈ APK(Wi), t |= p. Moreover, s′ simulates s,
hence K(Wi), s |= EXp.

s′ enriches s, K(Wi), s |= EFp ⇔ K(Wi+1), s
′ |=

E[e qtUp].

Proof. (⇒) If s |= p, s′ |= p then s′ |= EFp.
If s 6|= p, there exists a path σ in K(Wi) : σ = s →
t → . . . → r, such that r |= p. By Corollary 1 item 1,
there exists a path σ′ in K(Wi+1) : s′ → t′ → . . . →
r′ such that s′ enriches s with e qt, t′ enriches t with
e qt,. . ., and r′ enriches r then r |= p, hence s′ |=
E[e qtUp].

(⇐) Let K(Wi+1), s
′ |= E[e qtUp] and s′ enriches s with

e qt. There exists a path σ′ in K(Wi+1) : s′ → t′ →
. . . → r′ such that for all s′ ≤ u′ < r′, u′ |= e qt and
r′ |= p. By Corollary 1 item 4, there exists a path
σ in K(Wi) : s → t → . . . → r such that for all
s ≤ u < r u′ simulates u and r′ enriches r. Hence
r |= p if p is not concerned by the increment and
K(Wi), s |= EFp.

s′ enriches s, K(Wi), s |= EGp ⇔ K(Wi+1), s
′ |=

EG(e qt ∧ p).

Proof. (⇒) If K(Wi), s |= EGp there exists an infinite
path σ in K(Wi) s.t. s → t → . . . → r → . . ., and
such that s |= p, t |= p, . . ., r |= p, . . . By Corollary 1

item 1, there exists an infinite path σ′ in K(Wi+1) :
s′ → t′ → . . . → r′ → . . ., such that s′ |= p ∧ e qt,
t′ |= p∧e qt, . . ., r′ |= p∧e qt,. . . : s′ |= EG(e qt∧p).

(⇐) Let K(Wi+1), s
′ |= EG(e qt ∧ p) and s′ enriches s

with e qt, s ∈ SK(Wi). There exists an infinite path
σ′ in K(Wi+1) s′ → t′ → . . . → r′ → . . . such that
for all state u′ of this path u′ |= p∧e qt. By Corollary
1 item 4, there exists an infinite path σ in K(Wi) :
s → t → . . . → r → . . . such that s′ enriches s

with e qt, t′ enriches t with e qt . . ., hence if p is not
concerned by the increment, s |= p, t |= p. Hence,
K(Wi), s |= EGp.

s′ enriches s, K(Wi), s |= E[pUq] ⇔ K(Wi+1), s
′ |=

E[e qt ∧ pUq].

Proof. (⇒) If s |= q, then s′ |= q hence s′ |= E[(e qt ∧
p)Uq]. If s 6|= q, there exists an infinite path σ : s →
t → . . . → r → . . ., such that s |= p, t |= p, . . .,
r |= q. Let s′ enriches s with e qt, by Corollary 1
item 1, there exists an infinite path σ′ in K(Wi+1) :
s′ → t′ → . . . → r′ → . . ., such that s′ |= p ∧ e qt,
t′ |= p ∧ e qt, . . ., r′ enriches r and r′ |= q. Hence,
s′ |= E[(e qt ∧ p)Uq].

(⇐) Let K(Wi+1), s
′ |= E[(e qt ∧ p)Uq] and s′ enriches

s with e qt, s ∈ SK(Wi). There exists an infinite path
σ′ in K(Wi+1) : s′ → t′ → . . . → r′ . . . such that
s′ |= p∧e qt, t′ |= p∧e qt, . . ., r′ |= q. By Corollary 1
item: 4, there exists an infinite path in K(Wi) σ =
s → t → . . . → r → . . . such that s′ enriches s with
e qt, t′ enriches t with e qt, . . ., r′ enriches r. If p
and q are not concerned by the increment, σ satisfies
[pUq], hence K(Wi), s |= E[pUq].

s′ enriches s, K(Wi), s |= AXp ⇔ K(Wi+1), s
′ |=

(e qt ⇒ AXp).

Proof. (⇒) In K(Wi), p holds for all successors r of s.
If s′ enriches s with e qt, for all successors r′ of s′,
there exists a successor r of s such that r′ enriches r

(Corollary 1 item 3) hence r′ |= p. Else (if s′ enriches
s with e act), s′ |= e act, and e act = ¬e qt. Hence
s′ |= e qt ⇒ AXp.

(⇐) K(Wi+1), s
′ |= e qt ⇒ AXp. s′ enriches s, either

with e act (nothing to be said), or with e qt (hy-
pothesis). By Corollary 1 item 4, all successors of
s′ enriches states that are successors of s in K(Wi)
(with e qt or e act). All of them must verify p, hence
s |= AXp.

s′ enriches s, K(Wi), s |= AFp ⇔ K(Wi+1), s
′ |=

AF (e act ∨ p).

Proof. (⇒) In K(Wi) for all infinite path
σ = s0, . . . sn . . ., there exists a state sk, 0 ≤ k ≤ n in
which p is true. From Corollary 1 item 1, there exists
some path in K(Wi+1) σ′ = s′

0, . . . , s
′

i
, . . . s′

n, such
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that all the states s′

i
enriches si with e qt. Moreover,

by constructing K(Wi+1) we have that there doesn’t
exist any transition t′

k
from a state s′

k
in σ′ to a state

s′

k+1 labeled with e qt and which is not in the follow-
ing induction hypothesis :
If s′

k
∈ σ′ then s′

k
|= AF (p ∨ e act)

From s′

0, there exists a path such that all the states
verify e qt and AFp, hence s′

0 |= AF (p ∨ e act).
Let s′

k
∈ σ′, the set of these successors are as :

s′

k+1 = sk+1 ∧ e act and thus verify AF(p ∨ e act) or
s′

k+1 = sk+1 ∧ e qt,the transition from sk → sk+1 is
in σ′ and thus verify AF (p ∨ e act) (induction hy-
pothesis).

(⇐) Let s′

0 be a state in SK(Wi+1) s.t. s′

0 |= AF (e act ∨
p), and s′

0 enriches s0 with e qt.
1. if s′

0 |= p then s0 |= p, hence s0 |= AF (p).
2. if s′

0 6|= p then there exists three categories of suc-
cessors : t′ |= e qt ∧ p; t′′ |= e act; r′ |= e qt ∧ ¬p

and r′ |= AF (e act ∨ p). By Corollary 1 item 4,
there exists t and r in SK(Wi) s.t. they are suc-
cessors of s0 and t |= p and one can prove by
induction that r |= AFp. Hence s0 |= AFp.

s′ enriches s, K(Wi), s |= A[pUq] ⇔ K(Wi+1), s
′ |=

A[pU((e act ∧ p) ∨ q)].

Proof. (⇒) 1. Let be s0 ∈ SK(Wi), if s0 |= q, then
we have s0 |= A[pUq]. Let be s′

0 ∈ SK(Wi+1), s′

0

enriches s0 with e qt then s′

0 |= q, hence s′

0 |=
A[pU((e act ∧ p) ∨ q)].

2. If s0 6|= q, s0 |= p and all its successors Succ(s0)
verify A[pUq]. Let r in Succ(s0) be s.t. r |= q,
then we have r′ enriches r with e qt verifies q.
Hence r′ |= A[pU((e act∧p)∨q)]. Let t in Succ(s0)
be s.t. t |= p, then ∃t′, t′′ in SK(Wi+1

) s.t t′ |=
p ∧ e qt and t′′ |= p ∧ e act. By induction, one
can prove t′ |= A[pU((e act ∧ p) ∨ q)]. Hence all
successors of s′

0 verify s′ |=, A[pU((e act∧ p)∨ q)]
and s′

0 verifies it also.
(⇐) Let s′

0 be a state in SK(Wi+1) such that
s′

0 |= A[pU((e act ∧ p) ∨ q)] and s′

0 enriches s0 with
e qt.
1. If s′

0 |= q then s0 |= q and s0 |= A[pUq].
2. If s′

0 |= p ∧ e act, contradiction with the hypoth-
esis.

3. If s′

0 |= p then there exists 3 categories of suc-
cessor states: (see Figure ??) t′ |= p ∧ e qt, t′′ |=
p ∧ e act and r′ |= q. Moreover, t′ and t′′ verify
A[pU((e act∧p)∨q)]. By Corollary 1 item 4, there
exists t and r in SK(Wi) s.t. they are successors
of s0 and t |= p and r |= q. By incremental con-
struction s0 can not have a successor that verify
(¬p ∧¬q) and one can prove, by induction that t

verifies A[pUq]. Hence s0 verifies A[pUq].

s′ enriches s, K(Wi), s |= AGp ⇔ K(Wi+1), s
′ |=

A[pW (e act ∧ p)].

Proof. (⇒) 1. (In K(Wi+1), a state that do not ver-
ify p belongs to an added behaviour). Let be t′ ∈
SK(Wi+1), t′ |= p ∧ e qt and σ′ = s′ . . . t′. t′ =
(u′, c′) doesn’t simulate a state in SK(Wi) (∀s ∈ Si

s |= p). u′ corresponds to an added state into
Wi+1(∈ Σ+). Hence, t′ is only reachable from a
sequence having a state where e act holds (Corol-
lary 1 item 3).

2. In K(Wi+1), along paths reached from the ini-
tial state, all states verify e qt and p until a state
where e act holds is reached. Let be s′ such that s′

enriches s and a sequence σ′ = s′ . . . r′ . . . t′ with
s′ < r′ ≤ t′, if 6 ∃m′ labeled with e act such that
m′ < r′ then r′ |= p ∧ e qt or r′ |= p ∧ e act.

3. Infinite paths in K(Wi) correspond to infinite paths
labeled with e qt in K(Wi+1). By Corollary 1 item 1,
if there exists some infinite path in K(Wi), there
exists some infinite path in K(Wi+1) labeled with
e qt. Then there exists some infinite path in K(Wi+1)
which verify p ∧ e qt.
We have thus s′ |= A[pW (e act ∧ p)]

(⇐) Let s′

0 be a state in SK(Wi+1) such that
s′

0 |= A[pU((e act ∧ p) ∨ q)] and s′

0 enriches s0 with
e qt. All successor of s′

0 are such that : t′ |= p ∧ e qt

or t′′ |= p ∧ e act and verifies A[pU((e act ∧ p) ∨ q)].
If p is not concerned by the increment, By Corollary
1 item 4 there exists t ∈ SK(Wi) such that t |= p. By
incremental construction s′

0 can not have a successor
were ¬p holds and one can prove, by induction that
t verifies AGp. Hence s0 verifies AGp.

s′ enriches s, K(Wi), s |= A[pWq] ⇔ K(Wi+1), s
′ |=

A[pW ((e act ∧ p) ∨ q)].

Proof. (⇒) s |= A[pWq] then all paths from s are such
they verified pUq or Gp. In the first case, we use
the same reasoning as A[pUq]. In the second case, by
Corollary 1 item 1 these paths exist in K(Wi+1). The
divergent behaviours are labeling with e act (Corol-
lary 1 item 3). We have thus K(Wi+1), s

′ |=
A[pW ((e act ∧ p) ∨ q)]

(⇐) Same reasoning as A[pU((e act ∧ p) ∨ q)].

s′ enriches s, K(Wi), s |= ¬p ⇔ K(Wi+1), s
′ |= ¬p.

Proof. The proof proceeds as the one concerning posi-
tive atomic propositions.

s′ enriches s, K(Wi), s |= ¬Ψ ⇔ K(Wi+1), s
′ |= ¬Ψ ′.

Proof. The proof is performed by first transforming the
formulae into positive form and then applying the trans-
formation proven above. We compare the result with the
one obtain by transforming directly the negative form.
The weak until operator (W) is related to the strong
until operator (U) by the following equivalences:

A[pWq] = ¬E[¬qU(¬p ∧ ¬q)]
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E[pUq] = ¬A[¬qW (¬p ∧ ¬q)]

We recall here that ¬e act = e qt

(¬EXp)′=(AX¬p)′

=e qt ⇒ AX¬p

¬(EXp)′=¬(e qt ∧ EX¬p)

=¬e qt ∨ AX¬p

=e qt ⇒ AX¬p

Hence (¬EXp)′ = ¬(EXp)′ (1)

(¬EFp)′=(AG¬p)′

=A[¬pW (e act ∧ ¬p)]

¬(EFp)′=¬E[e qtUp]

=A[¬pW (e act ∧ ¬p)]

Hence (¬EFp)′ = ¬(EFp)′ (2)

(¬EGp)′=(AF¬p)′

=AF (e act ∨ ¬p)

¬(EGp)′=¬EG(e qt ∧ p)

=AF (e act ∨ ¬p)

Hence (¬EGp)′ = ¬(EGp)′ (3)

(¬E[pUq])′=A[¬qW (6= p ∧ ¬p)]′

=A[¬qW ((e act ∧ ¬q) ∨ (¬p ∧ ¬q)]

¬(E[pUq])′=¬E[(e qt ∧ p)Uq]

=A[¬qW¬(¬(e qt ∧ p) ∧ ¬q)]

=A[¬qW¬((e act ∨ ¬p) ∧ ¬q)]

=A[¬qW ((e act ∧ ¬q) ∨ (¬p ∧ ¬q)]

Hence (¬E[pUq])′ = ¬(E[pUq])′ (4)

(¬E[pWq])′=A[¬qU(6= p ∧ ¬p)]′

=A[¬qU((e act ∧ ¬q) ∨ (¬p ∧ ¬q)]

¬(E[pWq])′=¬E[(e qt ∧ p)Wq]

=A[¬qU¬(¬(e qt ∧ p) ∧ ¬q)]

=A[¬qU¬((e act ∨ ¬p) ∧ ¬q)]

=A[¬qU((e act ∧ ¬q) ∨ (¬p ∧ ¬q)]

Hence (¬E[pWq])′ = ¬(E[pWq])′ (5)

(¬AXp)′=(EX¬p)′

=e qt ∧ EX¬p

¬(AXp)′=¬(e qt ⇒ AX¬p)

=e qt ∧ EX¬p

Hence (¬AXp)′ = ¬(AXp)′ (6)

(¬AFp)′=(EG¬p)′

=EG(e qt ∧ ¬p)

¬(AFp)′=¬AF (e act ∨ p)

=EG(e qt ∧ ¬p)

Hence (¬AFp)′ = ¬(AFp)′ (7)

(¬AGp)′=(EF¬p)′

=E[e qtU¬p]

¬(AGp)′=¬A[pW (e act ∧ p)]

=E[¬(e act ∧ p)U(¬p ∧ ¬(e act ∧ p))]

=E[(e qt ∨ ¬p)U¬p]

=E[e qtU¬p]

Hence (¬AGp)′ = ¬(AGp)′ (8)

(¬A[pUq])′=(E[¬qW (¬p ∧ ¬q)])′

=E[(e qt ∧ ¬q)W (¬p ∧ ¬q)]

¬(A[pUq])′=¬A[pU((e act ∧ p) ∨ q)]

=E[¬((e act ∧ p) ∨ q)W (¬p ∧ ¬((e act ∧ p) ∨ q))]

=E[(( act ∧ ¬q) ∨ (¬p ∧ ¬q))W (¬p ∧ ¬q)]

=E[(e qt ∧ ¬q)W (¬p ∧ ¬q)]

Hence (¬A[pUq])′ = ¬(A[pUq])′ (9)

(¬A[pWq])′=(E[¬qU(¬p ∧ ¬q)])′

=E[(e qt ∧ ¬q)U(¬p ∧ ¬q)]

¬(A[pWq])′=¬A[pW ((e act ∧ p) ∨ q)]

=E[¬((e act ∧ p) ∨ q)U(¬p ∧ ¬((e act ∧ p) ∨ q))]

=E[(( act ∧ ¬q) ∨ (¬p ∧ ¬q))U(¬p ∧ ¬q)]

=E[(e qt ∧ ¬q)U(¬p ∧ ¬q)]

Hence (¬A[pWq])′ = ¬(A[pWq])′ (10)
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s′0

t′′

t′

p ∧ e qt

p ∧ e qt

p ∧ e act

r′

r′′

k′

p ∧ e qt

q ∧ e act

q ∧ e qt

K(Wi+1)

Fig. 1. K(Wi+1, s′ |= A[pU((e act ∧ p) ∨ q)] t′ and t′′ enriches t ∈ K(Wi) and t′ simulates t, r′ and r′′ enriches r ∈ K(Wi) and r′

simulates t.


