1 Theorem 1 partial proof: Proofs of each basic cases

s^{\prime} enriches $s, K\left(W_{i}\right), s \models p \Leftrightarrow K\left(W_{i+1}\right), s^{\prime} \models p, p$ is an atomic proposition that is not concerned with the increment.

Proof. (\Rightarrow) By definition, if s^{\prime} enriches s, s^{\prime} contains a greater set of atomic propositions than s. As $s \models p, p$ being an atomic proposition of s, then p is an atomic proposition of s^{\prime}, hence $s^{\prime} \models p$.
(\Leftarrow) If p is not a property concerned with the increment and $s^{\prime} \in S_{K\left(W_{i+1}\right)}$ enriches $s \in S_{K\left(W_{i}\right)}$, then $K\left(W_{i+1}\right), s^{\prime} \models p \Rightarrow K\left(W_{i}\right) \models p$.
s^{\prime} enriches $s, K\left(W_{i}\right), s \models E X p \Leftrightarrow K\left(W_{i+1}\right), s^{\prime} \models$ $\left(e_{-} q t \wedge E X p\right)$ and p in $A P_{K\left(W_{i}\right)}$.

Proof. (\Rightarrow) If $s \models E X p$, there exists a state $t=(u, c) \in$ $S_{K\left(W_{i}\right)}$ such that $s \rightarrow t$ and $t \models p$. Let be a state s^{\prime} enriching s with $e_{_} q t$; by Corollary 1 item 2 there exists $t^{\prime}=\left(u^{\prime}, c^{\prime}\right) \in S_{K\left(W_{i+1}\right)}$ such that $s^{\prime} \rightarrow t^{\prime}$, $u=u^{\prime}$, and $\operatorname{proj}\left(c^{\prime}, I_{i}\right)=c$. Hence $K\left(W_{i+1}\right), t^{\prime} \models p$ and $K\left(W_{i+1}\right), s^{\prime} \models e_{-} q t \wedge E X p$.
(\Leftarrow) Let be $K\left(W_{i+1}\right), s^{\prime} \models e_{-} q t \wedge E X p$ and s^{\prime} enriches s with $e_{-} q t$; let be $t^{\prime}=\left(u^{\prime}, c^{\prime}\right)$ such that $s^{\prime} \rightarrow t^{\prime}$ and $t^{\prime} \models p$. By Corollary 1 item 4, there exists $t=(u, c) \in$ $S_{K\left(W_{i}\right)}$, such that $u=u^{\prime}$, and $\operatorname{proj}\left(c^{\prime}, I_{i}\right)=c$, then as $p \in A P_{K\left(W_{i}\right)}, t \models p$. Moreover, s^{\prime} simulates s, hence $K\left(W_{i}\right), s \models E X p$.
s^{\prime} enriches $s, K\left(W_{i}\right), s \models E F p \Leftrightarrow K\left(W_{i+1}\right), s^{\prime} \models$ $E\left[e_{-} q t U p\right]$.

Proof. (\Rightarrow) If $s \models p, s^{\prime} \models p$ then $s^{\prime} \models E F p$.
If $s \not \vDash p$, there exists a path σ in $K\left(W_{i}\right): \sigma=s \rightarrow$ $t \rightarrow \ldots \rightarrow r$, such that $r \models p$. By Corollary 1 item 1 , there exists a path σ^{\prime} in $K\left(W_{i+1}\right): s^{\prime} \rightarrow t^{\prime} \rightarrow \ldots \rightarrow$ r^{\prime} such that s^{\prime} enriches s with $e_{-q} q, t^{\prime}$ enriches t with $e_{-} q t, \ldots$, and r^{\prime} enriches r then $r \models p$, hence $s^{\prime} \models$ $E\left[e_{-} q t U p\right]$.
(\Leftarrow) Let $K\left(W_{i+1}\right), s^{\prime} \models E\left[e_{-} q t U p\right]$ and s^{\prime} enriches s with $e_{-} q t$. There exists a path σ^{\prime} in $K\left(W_{i+1}\right): s^{\prime} \rightarrow t^{\prime} \rightarrow$ $\ldots \rightarrow r^{\prime}$ such that for all $s^{\prime} \leq u^{\prime}<r^{\prime}, u^{\prime} \models e_{-} q t$ and $r^{\prime} \models p$. By Corollary 1 item 4, there exists a path σ in $K\left(W_{i}\right): s \rightarrow t \rightarrow \ldots \rightarrow r$ such that for all $s \leq u<r u^{\prime}$ simulates u and r^{\prime} enriches r. Hence $r \models p$ if p is not concerned by the increment and $K\left(W_{i}\right), s \models E F p$.
s^{\prime} enriches $s, K\left(W_{i}\right), s \models E G p \Leftrightarrow K\left(W_{i+1}\right), s^{\prime} \models$ $E G\left(e_{-} q t \wedge p\right)$.

Proof. (\Rightarrow) If $K\left(W_{i}\right), s \models E G p$ there exists an infinite path σ in $K\left(W_{i}\right)$ s.t. $s \rightarrow t \rightarrow \ldots \rightarrow r \rightarrow \ldots$, and such that $s \models p, t \models p, \ldots, r \models p, \ldots$ By Corollary 1
item 1, there exists an infinite path σ^{\prime} in $K\left(W_{i+1}\right)$: $s^{\prime} \rightarrow t^{\prime} \rightarrow \ldots \rightarrow r^{\prime} \rightarrow \ldots$, such that $s^{\prime} \models p \wedge e_{_} q t$, $t^{\prime} \models p \wedge e_{-} q t, \ldots, r^{\prime} \models p \wedge e_{_} q t, \ldots: s^{\prime} \models E G\left(e_{-} q t \wedge p\right)$.
(\Leftarrow) Let $K\left(W_{i+1}\right), s^{\prime} \models E G\left(e_{-} q t \wedge p\right)$ and s^{\prime} enriches s with $e_{-} q t, s \in S_{K\left(W_{i}\right)}$. There exists an infinite path σ^{\prime} in $K\left(W_{i+1}\right) s^{\prime} \rightarrow t^{\prime} \rightarrow \ldots \rightarrow r^{\prime} \rightarrow \ldots$ such that for all state u^{\prime} of this path $u^{\prime} \models p \wedge e_{-} q t$. By Corollary 1 item 4, there exists an infinite path σ in $K\left(W_{i}\right)$: $s \rightarrow t \rightarrow \ldots \rightarrow r \rightarrow \ldots$ such that s^{\prime} enriches s with $e_{-} q t, t^{\prime}$ enriches t with $e_{-} q t \ldots$, hence if p is not concerned by the increment, $s \models p, t \models p$. Hence, $K\left(W_{i}\right), s \models E G p$.
s^{\prime} enriches $s, K\left(W_{i}\right), s \models E[p U q] \Leftrightarrow K\left(W_{i+1}\right), s^{\prime} \models$ $E\left[e_{-} q t \wedge p U q\right]$.

Proof. (\Rightarrow) If $s \models q$, then $s^{\prime} \models q$ hence $s^{\prime} \models E\left[\left(e_{_} q t \wedge\right.\right.$ $p) U q]$. If $s \not \vDash q$, there exists an infinite path $\sigma: s \rightarrow$ $t \rightarrow \ldots \rightarrow r \rightarrow \ldots$, such that $s \models p, t \models p, \ldots$, $r \models q$. Let s^{\prime} enriches s with $e_{_} q t$, by Corollary 1 item 1 , there exists an infinite path σ^{\prime} in $K\left(W_{i+1}\right)$: $s^{\prime} \rightarrow t^{\prime} \rightarrow \ldots \rightarrow r^{\prime} \rightarrow \ldots$, such that $s^{\prime} \models p \wedge e_{-} q t$, $t^{\prime} \models p \wedge e_{-} q t, \ldots, r^{\prime}$ enriches r and $r^{\prime} \models q$. Hence, $s^{\prime} \models E\left[\left(e_{-} q t \wedge p\right) U q\right]$.
(\Leftarrow) Let $K\left(W_{i+1}\right), s^{\prime} \models E\left[\left(e_{-q} t \wedge p\right) U q\right]$ and s^{\prime} enriches s with $e_{-} q t, s \in S_{K\left(W_{i}\right)}$. There exists an infinite path σ^{\prime} in $K\left(W_{i+1}\right): s^{\prime} \rightarrow t^{\prime} \rightarrow \ldots \rightarrow r^{\prime} \ldots$ such that $s^{\prime} \models p \wedge e_{_} q t, t^{\prime} \models p \wedge e_{_} q t, \ldots, r^{\prime} \models q$. By Corollary 1 item: 4, there exists an infinite path in $K\left(W_{i}\right) \sigma=$ $s \rightarrow t \rightarrow \ldots \rightarrow r \rightarrow \ldots$ such that s^{\prime} enriches s with $e_{_} q t, t^{\prime}$ enriches t with $e_{_} q t, \ldots, r^{\prime}$ enriches r. If p and q are not concerned by the increment, σ satisfies [pUq], hence $K\left(W_{i}\right), s \models E[p U q]$.
s^{\prime} enriches $s, K\left(W_{i}\right), s \models A X p \Leftrightarrow K\left(W_{i+1}\right), s^{\prime} \models$ $\left(e_{-} q t \Rightarrow A X p\right)$.

Proof. (\Rightarrow) In $K\left(W_{i}\right), p$ holds for all successors r of s. If s^{\prime} enriches s with $e_{-q} t$, for all successors r^{\prime} of s^{\prime}, there exists a successor r of s such that r^{\prime} enriches r (Corollary 1 item 3) hence $r^{\prime} \models p$. Else (if s^{\prime} enriches s with $\left.e_{-} a c t\right), s^{\prime} \models e_{-} a c t$, and $e_{-} a c t=\neg e_{_} q t$. Hence $s^{\prime} \models e_{-} q t \Rightarrow A X p$.
$(\Leftarrow) K\left(W_{i+1}\right), s^{\prime} \models e_{_} q t \Rightarrow A X p . s^{\prime}$ enriches s, either with e_act (nothing to be said), or with e_qt (hypothesis). By Corollary 1 item 4, all successors of s^{\prime} enriches states that are successors of s in $K\left(W_{i}\right)$ (with $e_{_} q t$ or $e_{-} a c t$). All of them must verify p, hence $s \models A X p$.
s^{\prime} enriches $s, K\left(W_{i}\right), s \models A F p \Leftrightarrow K\left(W_{i+1}\right), s^{\prime} \models$
$A F\left(e_{_} a c t \vee p\right)$.
Proof. (\Rightarrow) In $K\left(W_{i}\right)$ for all infinite path
$\sigma=s_{0}, \ldots s_{n} \ldots$, there exists a state $s_{k}, 0 \leq k \leq n$ in which p is true. From Corollary 1 item 1 , there exists some path in $K\left(W_{i+1}\right) \sigma^{\prime}=s_{0}^{\prime}, \ldots, s_{i}^{\prime}, \ldots s_{n}^{\prime}$, such
that all the states s_{i}^{\prime} enriches s_{i} with $e_{-} q t$. Moreover, by constructing $K\left(W_{i+1}\right)$ we have that there doesn't exist any transition t_{k}^{\prime} from a state s_{k}^{\prime} in σ^{\prime} to a state s_{k+1}^{\prime} labeled with $e_{_} q t$ and which is not in the following induction hypothesis:
If $s_{k}^{\prime} \in \sigma^{\prime}$ then $s_{k}^{\prime} \models A F\left(p \vee e_{-} a c t\right)$
From s_{0}^{\prime}, there exists a path such that all the states verify $e_{-} q t$ and $A F p$, hence $s_{0}^{\prime} \models A F\left(p \vee e_{_} a c t\right)$.
Let $s_{k}^{\prime} \in \sigma^{\prime}$, the set of these successors are as:
$s_{k+1}^{\prime}=s_{k+1} \wedge e_{-} a c t$ and thus verify $\mathrm{AF}(\mathrm{p} \vee \mathrm{e}$ _act $)$ or $s_{k+1}^{\prime}=s_{k+1} \wedge e_{-} q t$, the transition from $s_{k} \rightarrow s_{k+1}$ is in σ^{\prime} and thus verify $A F\left(p \vee e_{_} a c t\right)$ (induction hypothesis).
(\Leftarrow) Let s_{0}^{\prime} be a state in $S_{K\left(W_{i+1}\right)}$ s.t. $s_{0}^{\prime} \models A F\left(e_{-} a c t \vee\right.$ $p)$, and s_{0}^{\prime} enriches s_{0} with $e_{-} q t$.

1. if $s_{0}^{\prime} \models p$ then $s_{0} \models p$, hence $s_{0} \models A F(p)$.
2. if $s_{0}^{\prime} \not \equiv p$ then there exists three categories of successors : $t^{\prime} \models e_{-} q t \wedge p ; t^{\prime \prime} \models e_{-} a c t ; r^{\prime} \models e_{-} q t \wedge \neg p$ and $r^{\prime} \models A F\left(e_{-} a c t \vee p\right)$. By Corollary 1 item 4, there exists t and r in $S_{K\left(W_{i}\right)}$ s.t. they are successors of s_{0} and $t \models p$ and one can prove by induction that $r \models A F p$. Hence $s_{0} \models A F p$.
s^{\prime} enriches $s, K\left(W_{i}\right), s \models A[p U q] \Leftrightarrow K\left(W_{i+1}\right), s^{\prime} \models$
$A\left[p U\left(\left(e_{-} a c t \wedge p\right) \vee q\right)\right]$.
Proof. (\Rightarrow) 1. Let be $s_{0} \in S_{K\left(W_{i}\right)}$, if $s_{0} \models q$, then we have $s_{0} \models A[p U q]$. Let be $s_{0}^{\prime} \in S_{K\left(W_{i+1}\right)}, s_{0}^{\prime}$ enriches s_{0} with $e_{-} q t$ then $s_{0}^{\prime} \models q$, hence $s_{0}^{\prime} \models$ $A\left[p U\left(\left(e_{-} a c t \wedge p\right) \vee q\right)\right]$.
3. If $s_{0} \not \models q, s_{0} \models p$ and all its successors $\operatorname{Succ}\left(s_{0}\right)$ verify $A[p U q]$. Let r in $\operatorname{Succ}\left(s_{0}\right)$ be s.t. $r \models q$, then we have r^{\prime} enriches r with $e_{-} q t$ verifies q. Hence $r^{\prime} \models A\left[p U\left(\left(e_{_} a c t \wedge p\right) \vee q\right)\right]$. Let t in $S u c c\left(s_{0}\right)$ be s.t. $t \models p$, then $\exists t^{\prime}, t^{\prime \prime}$ in $\left.S_{K\left(W_{i+1}\right)}\right)$ s.t $t^{\prime} \models$ $p \wedge e_{-} q t$ and $t^{\prime \prime} \models p \wedge e_{_} a c t$. By induction, one can prove $t^{\prime} \models A\left[p U\left(\left(e_{-} a c t \wedge p\right) \vee q\right)\right]$. Hence all successors of s_{0}^{\prime} verify $s^{\prime} \models, A\left[p U\left(\left(e_{-} a c t \wedge p\right) \vee q\right)\right]$ and s_{0}^{\prime} verifies it also.
(\Leftarrow) Let s_{0}^{\prime} be a state in $S_{K\left(W_{i+1}\right)}$ such that
$s_{0}^{\prime} \models A\left[p U\left(\left(e_{-} a c t \wedge p\right) \vee q\right)\right]$ and s_{0}^{\prime} enriches s_{0} with e_qt.
4. If $s_{0}^{\prime} \models q$ then $s_{0} \models q$ and $s_{0} \models A[p U q]$.
5. If $s_{0}^{\prime} \models p \wedge e_{_} a c t$, contradiction with the hypothesis.
6. If $s_{0}^{\prime} \models p$ then there exists 3 categories of successor states: (see Figure ??) $t^{\prime} \models p \wedge e_{_} q t, t^{\prime \prime} \models$ $p \wedge e _a c t$ and $r^{\prime} \models q$. Moreover, t^{\prime} and $t^{\prime \prime}$ verify $A\left[p U\left(\left(e_{-} a c t \wedge p\right) \vee q\right)\right]$. By Corollary 1 item 4 , there exists t and r in $S_{K\left(W_{i}\right)}$ s.t. they are successors of s_{0} and $t \models p$ and $r \models q$. By incremental construction s_{0} can not have a successor that verify $(\neg p \wedge \neg q)$ and one can prove, by induction that t verifies $A[p U q]$. Hence s_{0} verifies $A[p U q]$.
s^{\prime} enriches $s, K\left(W_{i}\right), s \models A G p \Leftrightarrow K\left(W_{i+1}\right), s^{\prime} \models$ $A\left[p W\left(e_{-} a c t \wedge p\right)\right]$.

Proof. (\Rightarrow) 1. (In $K\left(W_{i+1}\right)$, a state that do not verify p belongs to an added behaviour). Let be $t^{\prime} \in$ $S_{K\left(W_{i+1}\right)}, t^{\prime} \models \bar{p} \wedge e_{_} q t$ and $\sigma^{\prime}=s^{\prime} \ldots t^{\prime} . t^{\prime}=$ (u^{\prime}, c^{\prime}) doesn't simulate a state in $S_{K\left(W_{i}\right)}\left(\forall s \in S_{i}\right.$ $s \models p)$. u^{\prime} corresponds to an added state into $W_{i+1}\left(\in \Sigma_{+}\right)$. Hence, t^{\prime} is only reachable from a sequence having a state where e_act holds (Corollary 1 item 3).
2. In $K\left(W_{i+1}\right)$, along paths reached from the initial state, all states verify e_qt and p until a state where e_act holds is reached. Let be s^{\prime} such that s^{\prime} enriches s and a sequence $\sigma^{\prime}=s^{\prime} \ldots r^{\prime} \ldots t^{\prime}$ with $s^{\prime}<r^{\prime} \leq t^{\prime}$, if $\nexists m^{\prime}$ labeled with e_{-}act such that $m^{\prime}<r^{\prime}$ then $r^{\prime} \models p \wedge e_{-} q t$ or $r^{\prime} \models p \wedge e_{-} a c t$.
3. Infinite paths in $K\left(W_{i}\right)$ correspond to infinite paths labeled with e_qt in $K\left(W_{i+1}\right)$. By Corollary 1 item 1, if there exists some infinite path in $K\left(W_{i}\right)$, there exists some infinite path in $K\left(W_{i+1}\right)$ labeled with $e_{_} q t$. Then there exists some infinite path in $K\left(W_{i+1}\right)$ which verify $p \wedge e_{-} q t$.
We have thus $s^{\prime} \models A\left[p W\left(e_{_} a c t \wedge p\right)\right]$
(\Leftarrow) Let s_{0}^{\prime} be a state in $S_{K\left(W_{i+1}\right)}$ such that
$s_{0}^{\prime} \models A\left[p U\left(\left(e_{-} a c t \wedge p\right) \vee q\right)\right]$ and s_{0}^{\prime} enriches s_{0} with $e_{_} q t$. All successor of s_{0}^{\prime} are such that $: t^{\prime} \models p \wedge e_{_} q t$ or $t^{\prime \prime} \models p \wedge e_{-} a c t$ and verifies $A\left[p U\left(\left(e_{-} a c t \wedge p\right) \vee q\right)\right]$. If p is not concerned by the increment, By Corollary 1 item 4 there exists $t \in S_{K\left(W_{i}\right)}$ such that $t \models p$. By incremental construction s_{0}^{\prime} can not have a successor were $\neg p$ holds and one can prove, by induction that t verifies $A G p$. Hence s_{0} verifies $A G p$.

$$
\begin{aligned}
& s^{\prime} \text { enriches } s, K\left(W_{i}\right), s \models A[p W q] \Leftrightarrow K\left(W_{i+1}\right), s^{\prime} \models \\
& A\left[p W\left(\left(e_{-} a c t \wedge p\right) \vee q\right)\right] .
\end{aligned}
$$

Proof. $(\Rightarrow) s \models A[p W q]$ then all paths from s are such they verified $p U q$ or $G p$. In the first case, we use the same reasoning as $A[p U q]$. In the second case, by Corollary 1 item 1 these paths exist in $K\left(W_{i+1}\right)$. The divergent behaviours are labeling with e_{-}act (Corollary 1 item 3$)$. We have thus $K\left(W_{i+1}\right), s^{\prime} \models$ $A\left[p W\left(\left(e _a c t \wedge p\right) \vee q\right)\right]$
(\Leftarrow) Same reasoning as $A\left[p U\left(\left(e_{-} a c t \wedge p\right) \vee q\right)\right]$.
s^{\prime} enriches $s, K\left(W_{i}\right), s \models \neg p \Leftrightarrow K\left(W_{i+1}\right), s^{\prime} \models \neg p$.
Proof. The proof proceeds as the one concerning positive atomic propositions.

```
\(s^{\prime}\) enriches \(s, K\left(W_{i}\right), s \models \neg \Psi \Leftrightarrow K\left(W_{i+1}\right), s^{\prime} \models \neg \Psi^{\prime}\).
```

Proof. The proof is performed by first transforming the formulae into positive form and then applying the transformation proven above. We compare the result with the one obtain by transforming directly the negative form. The weak until operator (W) is related to the strong until operator (U) by the following equivalences:

$$
A[p W q]=\neg E[\neg q U(\neg p \wedge \neg q)]
$$

$$
E[p U q]=\neg A[\neg q W(\neg p \wedge \neg q)]
$$

We recall here that $\neg e_{-} a c t=e_{-} q t$

$$
\begin{align*}
(\neg E X p)^{\prime} & =(A X \neg p)^{\prime} \\
& =e_{_} q t \Rightarrow A X \neg p \\
\neg(E X p)^{\prime} & =\neg\left(e_{_} q t \wedge E X \neg p\right) \tag{6}\\
& =\neg e_{_} q t \vee A X \neg p \\
& =e_{_} q t \Rightarrow A X \neg p \tag{1}
\end{align*}
$$

Hence $(\neg E X p)^{\prime}=\neg(E X p)^{\prime}$

$$
\begin{align*}
(\neg E F p)^{\prime} & =(A G \neg p)^{\prime} \\
& =A\left[\neg p W\left(e_{2} a c t \wedge \neg p\right)\right] \tag{7}\\
\neg(E F p)^{\prime} & =\neg E\left[e_{-} q t U p\right] \\
& =A\left[\neg p W\left(e_{_} a c t \wedge \neg p\right)\right]
\end{align*}
$$

$$
\text { Hence } \quad(\neg E F p)^{\prime}=\neg(E F p)^{\prime}
$$

$$
(\neg E G p)^{\prime}=(A F \neg p)^{\prime}
$$

$$
=A F\left(e _a c t \vee \neg p\right)
$$

$$
\neg(E G p)^{\prime}=\neg E G\left(e_{-} q t \wedge p\right)
$$

$$
\begin{equation*}
=A F\left(e _a c t \vee \neg p\right) \tag{3}
\end{equation*}
$$

Hence $\quad(\neg E G p)^{\prime}=\neg(E G p)^{\prime}$

$$
\begin{align*}
(\neg E[p U q])^{\prime} & =A[\neg q W(\neq p \wedge \neg p)]^{\prime} \\
& =A\left[\neg q W\left(\left(e_{-} a c t \wedge \neg q\right) \vee(\neg p \wedge \neg q)\right]\right. \\
\neg(E[p U q])^{\prime} & =\neg E\left[\left(e_{-} q t \wedge p\right) U q\right] \\
& =A\left[\neg q W \neg\left(\neg\left(e_{-} q t \wedge p\right) \wedge \neg q\right)\right] \\
& =A\left[\neg q W \neg\left(\left(e_{-} a c t \vee \neg p\right) \wedge \neg q\right)\right] \tag{9}\\
& =A\left[\neg q W\left(\left(e_{-} a c t \wedge \neg q\right) \vee(\neg p \wedge \neg q)\right]\right. \tag{4}
\end{align*}
$$

Hence $\quad(\neg E[p U q])^{\prime}=\neg(E[p U q])^{\prime}$

$$
\begin{align*}
(\neg E[p W q])^{\prime} & =A[\neg q U(\neq p \wedge \neg p)]^{\prime} \\
& =A\left[\neg q U\left(\left(e_{-} a c t \wedge \neg q\right) \vee(\neg p \wedge \neg q)\right]\right. \\
\neg(E[p W q])^{\prime} & =\neg E\left[\left(e_{_} q t \wedge p\right) W q\right] \\
& =A\left[\neg q U \neg\left(\neg\left(e_{-} q t \wedge p\right) \wedge \neg q\right)\right] \\
& =A\left[\neg q U \neg\left(\left(e_{-} a c t \vee \neg p\right) \wedge \neg q\right)\right] \tag{10}\\
& =A\left[\neg q U\left(\left(e_{-} a c t \wedge \neg q\right) \vee(\neg p \wedge \neg q)\right]\right.
\end{align*}
$$

$$
\begin{equation*}
\text { Hence }(\neg E[p W q])^{\prime}=\neg(E[p W q])^{\prime} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
(\neg A G p)^{\prime} & =(E F \neg p)^{\prime} \tag{2}\\
& =E\left[e_{_} q t U \neg p\right] \\
\neg(A G p)^{\prime} & =\neg A\left[p W\left(e_{-} a c t \wedge p\right)\right] \\
& =E\left[\neg\left(e_{_} a c t \wedge p\right) U\left(\neg p \wedge \neg\left(e_{-} a c t \wedge p\right)\right)\right] \\
& =E\left[\left(e_{-} q t \vee \neg p\right) U \neg p\right] \\
& =E\left[e_{-} q t U \neg p\right] \\
\text { Hence } & (\neg A G p)^{\prime}=\neg(A G p)^{\prime} \tag{8}
\end{align*}
$$

$$
\begin{aligned}
(\neg A[p U q])^{\prime} & =(E[\neg q W(\neg p \wedge \neg q)])^{\prime} \\
& =E\left[\left(e_{-} q t \wedge \neg q\right) W(\neg p \wedge \neg q)\right] \\
\neg(A[p U q])^{\prime} & =\neg A\left[p U\left(\left(e_{-} a c t \wedge p\right) \vee q\right)\right] \\
& =E\left[\neg\left(\left(e_{-} a c t \wedge p\right) \vee q\right) W\left(\neg p \wedge \neg\left(\left(e_{-} a c t \wedge p\right) \vee q\right)\right)\right] \\
& =E\left[\left(\left(_a c t \wedge \neg q\right) \vee(\neg p \wedge \neg q)\right) W(\neg p \wedge \neg q)\right] \\
& =E\left[\left(e_{-} q t \wedge \neg q\right) W(\neg p \wedge \neg q)\right]
\end{aligned}
$$

$$
\text { Hence } \quad(\neg A[p U q])^{\prime}=\neg(A[p U q])^{\prime}
$$

$$
\begin{aligned}
(\neg A[p W q])^{\prime} & =(E[\neg q U(\neg p \wedge \neg q)])^{\prime} \\
& =E\left[\left(e_{-} q t \wedge \neg q\right) U(\neg p \wedge \neg q)\right] \\
\neg(A[p W q])^{\prime} & =\neg A\left[p W\left(\left(e_{_} a c t \wedge p\right) \vee q\right)\right] \\
& =E\left[\neg\left(\left(e_{_} a c t \wedge p\right) \vee q\right) U\left(\neg p \wedge \neg\left(\left(e_{-} a c t \wedge p\right) \vee q\right)\right)\right] \\
& =E\left[\left(\left(_a c t \wedge \neg q\right) \vee(\neg p \wedge \neg q)\right) U(\neg p \wedge \neg q)\right] \\
& =E\left[\left(e_{-} q t \wedge \neg q\right) U(\neg p \wedge \neg q)\right]
\end{aligned}
$$

$$
\text { Hence }(\neg A[p W q])^{\prime}=\neg(A[p W q])^{\prime}
$$

Fig. 1. $K\left(W_{i+1}, s^{\prime} \models A\left[p U\left(\left(e_{_} a c t \wedge p\right) \vee q\right)\right] t^{\prime}\right.$ and $t^{\prime \prime}$ enriches $t \in K\left(W_{i}\right)$ and t^{\prime} simulates t, r^{\prime} and $r^{\prime \prime}$ enriches $r \in K\left(W_{i}\right)$ and r^{\prime} simulates t.

