1 Theorem 1 partial proof : Proofs of each basic cases

s' enriches s, $K(W_i)$, $s \models p \Leftrightarrow K(W_{i+1})$, $s' \models p$, p is an atomic proposition that is not concerned with the increment.

- *Proof.* (\Rightarrow) By definition, if s' enriches s, s' contains a greater set of atomic propositions than s. As $s \models p, p$ being an atomic proposition of s, then p is an atomic proposition of s', hence $s' \models p$.
- (⇐) If p is not a property concerned with the increment and $s' \in S_{K(W_{i+1})}$ enriches $s \in S_{K(W_i)}$, then $K(W_{i+1}), s' \models p \Rightarrow K(W_i) \models p.$

s' enriches s, $K(W_i)$, s $\models EXp \Leftrightarrow K(W_{i+1})$, s' $\models (e_qt \land EXp)$ and p in $AP_{K(W_i)}$.

- Proof. (\Rightarrow) If $s \models EXp$, there exists a state $t = (u, c) \in S_{K(W_i)}$ such that $s \to t$ and $t \models p$. Let be a state s' enriching s with e_qt ; by Corollary 1 item 2 there exists $t' = (u', c') \in S_{K(W_{i+1})}$ such that $s' \to t'$, u = u', and $proj(c', I_i) = c$. Hence $K(W_{i+1}), t' \models p$ and $K(W_{i+1}), s' \models e_qt \land EXp$.
- (⇐) Let be $K(W_{i+1}), s' \models e_qt \land EXp$ and s' enriches swith e_qt ; let be t' = (u', c') such that $s' \to t'$ and $t' \models p$. By Corollary 1 item 4, there exists $t = (u, c) \in$ $S_{K(W_i)}$, such that u = u', and $proj(c', I_i) = c$, then as $p \in AP_{K(W_i)}, t \models p$. Moreover, s' simulates s, hence $K(W_i), s \models EXp$.

s' enriches s, $K(W_i)$, s $\models EFp \Leftrightarrow K(W_{i+1})$, s' $\models E[e_qtUp]$.

- *Proof.* (\Rightarrow) If $s \models p, s' \models p$ then $s' \models EFp$.
- If $s \not\models p$, there exists a path σ in $K(W_i) : \sigma = s \rightarrow t \rightarrow \ldots \rightarrow r$, such that $r \models p$. By Corollary 1 item 1, there exists a path σ' in $K(W_{i+1}) : s' \rightarrow t' \rightarrow \ldots \rightarrow r'$ such that s' enriches s with e_qt, t' enriches t with e_qt, \ldots , and r' enriches r then $r \models p$, hence $s' \models E[e_qtUp]$.
- (\Leftarrow) Let $K(W_{i+1}), s' \models E[e_qtUp]$ and s' enriches s with e_qt . There exists a path σ' in $K(W_{i+1}) : s' \to t' \to$ $\dots \to r'$ such that for all $s' \leq u' < r', u' \models e_qt$ and $r' \models p$. By Corollary 1 item 4, there exists a path σ in $K(W_i) : s \to t \to \dots \to r$ such that for all $s \leq u < r u'$ simulates u and r' enriches r. Hence $r \models p$ if p is not concerned by the increment and $K(W_i), s \models EFp$.

s' enriches $s, K(W_i), s \models EGp \Leftrightarrow K(W_{i+1}), s' \models EG(e_qt \land p).$

Proof. (\Rightarrow) If $K(W_i), s \models EGp$ there exists an infinite path σ in $K(W_i)$ s.t. $s \to t \to \ldots \to r \to \ldots$, and such that $s \models p, t \models p, \ldots, r \models p, \ldots$ By Corollary 1

item 1, there exists an infinite path σ' in $K(W_{i+1})$: $s' \to t' \to \ldots \to r' \to \ldots$, such that $s' \models p \land e_qt$, $t' \models p \land e_qt, \ldots, r' \models p \land e_qt, \ldots : s' \models EG(e_qt \land p)$. (\Leftarrow) Let $K(W_{i+1}), s' \models EG(e_qt \land p)$ and s' enriches swith $e_qt, s \in S_{K(W_i)}$. There exists an infinite path σ' in $K(W_{i+1}) s' \to t' \to \ldots \to r' \to \ldots$ such that for all state u' of this path $u' \models p \land e_qt$. By Corollary 1 item 4, there exists an infinite path σ in $K(W_i)$: $s \to t \to \ldots \to r \to \ldots$ such that s' enriches swith e_qt, t' enriches t with $e_qt \ldots$, hence if p is not concerned by the increment, $s \models p, t \models p$. Hence, $K(W_i), s \models EGp$.

s' enriches s, $K(W_i), s \models E[pUq] \Leftrightarrow K(W_{i+1}), s' \models E[e_qt \land pUq].$

- Proof. (\Rightarrow) If $s \models q$, then $s' \models q$ hence $s' \models E[(e_qt \land p)Uq]$. If $s \not\models q$, there exists an infinite path $\sigma : s \rightarrow t \rightarrow \ldots \rightarrow r \rightarrow \ldots$, such that $s \models p, t \models p, \ldots, r \models q$. Let s' enriches s with e_qt , by Corollary 1 item 1, there exists an infinite path σ' in $K(W_{i+1}) :$ $s' \rightarrow t' \rightarrow \ldots \rightarrow r' \rightarrow \ldots$, such that $s' \models p \land e_qt, t' \models p \land e_qt, \ldots, r'$ enriches r and $r' \models q$. Hence, $s' \models E[(e_qt \land p)Uq]$.
- (\Leftarrow) Let $K(W_{i+1}), s' \models E[(e_qt \land p)Uq]$ and s' enriches s with $e_qt, s \in S_{K(W_i)}$. There exists an infinite path σ' in $K(W_{i+1}) : s' \to t' \to \ldots \to r' \ldots$ such that $s' \models p \land e_qt, t' \models p \land e_qt, \ldots, r' \models q$. By Corollary 1 item: 4, there exists an infinite path in $K(W_i) \sigma =$ $s \to t \to \ldots \to r \to \ldots$ such that s' enriches s with e_qt, t' enriches t with e_qt, \ldots, r' enriches r. If p and q are not concerned by the increment, σ satisfies [pUq], hence $K(W_i), s \models E[pUq]$.

$$s'$$
 enriches $s, K(W_i), s \models AXp \Leftrightarrow K(W_{i+1}), s' \models (e_qt \Rightarrow AXp).$

- Proof. (\Rightarrow) In $K(W_i)$, p holds for all successors r of s. If s' enriches s with e_qt , for all successors r' of s', there exists a successor r of s such that r' enriches r (Corollary 1 item 3) hence $r' \models p$. Else (if s' enriches s with e_act), $s' \models e_act$, and $e_act = \neg e_qt$. Hence $s' \models e_qt \Rightarrow AXp$.
- (\Leftarrow) $K(W_{i+1}), s' \models e_qt \Rightarrow AXp. s'$ enriches s, either with e_act (nothing to be said), or with e_qt (hypothesis). By Corollary 1 item 4, all successors of s' enriches states that are successors of s in $K(W_i)$ (with e_qt or e_act). All of them must verify p, hence $s \models AXp$.

s' enriches $s, K(W_i), s \models AFp \Leftrightarrow K(W_{i+1}), s' \models AF(e_act \lor p).$

- *Proof.* (\Rightarrow) In $K(W_i)$ for all infinite path
- $\sigma = s_0, \ldots s_n \ldots$, there exists a state $s_k, 0 \le k \le n$ in which p is true. From Corollary 1 item 1, there exists some path in $K(W_{i+1}) \sigma' = s'_0, \ldots, s'_i, \ldots, s'_n$, such

that all the states s'_i enriches s_i with e_qt . Moreover, by constructing $K(W_{i+1})$ we have that there doesn't exist any transition t'_k from a state s'_k in σ' to a state s'_{k+1} labeled with e_qt and which is not in the following induction hypothesis :

If $s'_k \in \sigma'$ then $s'_k \models AF(p \lor e_act)$

From s'_0 , there exists a path such that all the states verify e_qt and AFp, hence $s'_0 \models AF(p \lor e_act)$. Let $s'_k \in \sigma'$, the set of these successors are as :

 $s'_{k+1} = s_{k+1} \wedge e_act$ and thus verify $AF(p \lor e_act)$ or $s'_{k+1} = s_{k+1} \wedge e_qt$, the transition from $s_k \to s_{k+1}$ is in σ' and thus verify $AF(p \lor e_act)$ (induction hypothesis).

- (\Leftarrow) Let s'_0 be a state in $S_{K(W_{i+1})}$ s.t. $s'_0 \models AF(e_act \lor p)$, and s'_0 enriches s_0 with e_qt .
 - 1. if $s'_0 \models p$ then $s_0 \models p$, hence $s_0 \models AF(p)$.
 - 2. if $s'_0 \not\models p$ then there exists three categories of successors : $t' \models e_qt \land p$; $t'' \models e_act$; $r' \models e_qt \land \neg p$ and $r' \models AF(e_act \lor p)$. By Corollary 1 item 4, there exists t and r in $S_{K(W_i)}$ s.t. they are successors of s_0 and $t \models p$ and one can prove by induction that $r \models AFp$. Hence $s_0 \models AFp$.

s' enriches $s, K(W_i), s \models A[pUq] \Leftrightarrow K(W_{i+1}), s' \models A[pU((e_act \land p) \lor q)].$

- Proof. (\Rightarrow) 1. Let be $s_0 \in S_{K(W_i)}$, if $s_0 \models q$, then we have $s_0 \models A[pUq]$. Let be $s'_0 \in S_{K(W_{i+1})}, s'_0$ enriches s_0 with e_qt then $s'_0 \models q$, hence $s'_0 \models A[pU((e_act \land p) \lor q)]$.
 - 2. If $s_0 \not\models q$, $s_0 \not\models p$ and all its successors $Succ(s_0)$ verify A[pUq]. Let r in $Succ(s_0)$ be s.t. $r \not\models q$, then we have r' enriches r with e_qt verifies q. Hence $r' \models A[pU((e_act \land p) \lor q)]$. Let t in $Succ(s_0)$ be s.t. $t \models p$, then $\exists t', t''$ in $S_{K(W_{i+1})}$ s.t $t' \models$ $p \land e_qt$ and $t'' \models p \land e_act$. By induction, one can prove $t' \models A[pU((e_act \land p) \lor q)]$. Hence all successors of s'_0 verify $s' \models A[pU((e_act \land p) \lor q)]$ and s'_0 verifies it also.
- (\Leftarrow) Let s'_0 be a state in $S_{K(W_{i+1})}$ such that
 - $s'_0 \models A[pU((e_act \land p) \lor q)]$ and s'_0 enriches s_0 with e_qt .
 - 1. If $s'_0 \models q$ then $s_0 \models q$ and $s_0 \models A[pUq]$.
 - 2. If $s'_0 \models p \land e_act$, contradiction with the hypothesis.
 - 3. If $s'_0 \models p$ then there exists 3 categories of successor states: (see Figure ??) $t' \models p \land e_qt, t'' \models p \land e_act$ and $r' \models q$. Moreover, t' and t'' verify $A[pU((e_act \land p) \lor q)]$. By Corollary 1 item 4, there exists t and r in $S_{K(W_i)}$ s.t. they are successors of s_0 and $t \models p$ and $r \models q$. By incremental construction s_0 can not have a successor that verify $(\neg p \land \neg q)$ and one can prove, by induction that t verifies A[pUq]. Hence s_0 verifies A[pUq].

s' enriches $s, K(W_i), s \models AGp \Leftrightarrow K(W_{i+1}), s' \models A[pW(e_act \land p)].$

- Proof. (\Rightarrow) 1. (In $K(W_{i+1})$, a state that do not verify p belongs to an added behaviour). Let be $t' \in S_{K(W_{i+1})}$, $t' \models \overline{p} \land e_qt$ and $\sigma' = s' \ldots t'$. t' = (u', c') doesn't simulate a state in $S_{K(W_i)}$ ($\forall s \in S_i$ $s \models p$). u' corresponds to an added state into $W_{i+1} (\in \Sigma_+)$. Hence, t' is only reachable from a sequence having a state where e_act holds (Corollary 1 item 3).
 - 2. In $K(W_{i+1})$, along paths reached from the initial state, all states verify e_qt and p until a state where e_act holds is reached. Let be s' such that s' enriches s and a sequence $\sigma' = s' \dots r' \dots t'$ with $s' < r' \le t'$, if $\not\exists m'$ labeled with e_act such that m' < r' then $r' \models p \land e_qt$ or $r' \models p \land e_act$.
 - 3. Infinite paths in $K(W_i)$ correspond to infinite paths labeled with e_qt in $K(W_{i+1})$. By Corollary 1 item 1, if there exists some infinite path in $K(W_i)$, there exists some infinite path in $K(W_{i+1})$ labeled with e_qt . Then there exists some infinite path in $K(W_{i+1})$ which verify $p \land e_qt$.

We have thus $s' \models A[pW(e_act \land p)]$

(\Leftarrow) Let s'_0 be a state in $S_{K(W_{i+1})}$ such that $s'_0 \models A[pU((e_act \land p) \lor q)]$ and s'_0 enriches s_0 with e_qt . All successor of s'_0 are such that : $t' \models p \land e_qt$ or $t'' \models p \land e_act$ and verifies $A[pU((e_act \land p) \lor q)]$. If p is not concerned by the increment, By Corollary 1 item 4 there exists $t \in S_{K(W_i)}$ such that $t \models p$. By incremental construction s'_0 can not have a successor were $\neg p$ holds and one can prove, by induction that t verifies AGp. Hence s_0 verifies AGp.

s' enriches s, $K(W_i)$, s $\models A[pWq] \Leftrightarrow K(W_{i+1})$, s' $\models A[pW((e_act \land p) \lor q)].$

Proof. (\Rightarrow) $s \models A[pWq]$ then all paths from s are such they verified pUq or Gp. In the first case, we use the same reasoning as A[pUq]. In the second case, by Corollary 1 item 1 these paths exist in $K(W_{i+1})$. The divergent behaviours are labeling with e_act (Corollary 1 item 3). We have thus $K(W_{i+1}), s' \models$ $A[pW((e_act \land p) \lor q)]$

(⇐) Same reasoning as $A[pU((e_act \land p) \lor q)]$.

|--|

Proof. The proof proceeds as the one concerning positive atomic propositions.

$$s'$$
 enriches $s, K(W_i), s \models \neg \Psi \Leftrightarrow K(W_{i+1}), s' \models \neg \Psi'.$

Proof. The proof is performed by first transforming the formulae into positive form and then applying the transformation proven above. We compare the result with the one obtain by transforming directly the negative form. The weak until operator (W) is related to the strong until operator (U) by the following equivalences:

$$A[pWq] = \neg E[\neg qU(\neg p \land \neg q)]$$

$$E[pUq] = \neg A[\neg qW(\neg p \land \neg q)]$$

We recall here that $\neg e_act = e_qt$

$$(\neg EXp)' = (AX \neg p)'$$

$$= e_qt \Rightarrow AX \neg p$$

$$\neg (EXp)' = \neg (e_qt \land EX \neg p)$$

$$= \neg e_qt \lor AX \neg p$$

$$= e_qt \Rightarrow AX \neg p$$
Hence $(\neg EXp)' = \neg (EXp)'$ (1)

$$(\neg EFp)' = (AG\neg p)'$$

$$= A[\neg pW(e_act \land \neg p)]$$

$$\neg (EFp)' = \neg E[e_qtUp]$$

$$= A[\neg pW(e_act \land \neg p)]$$

$$Hence \quad (\neg EFp)' = \neg (EFp)' \qquad (2)$$

$$(\neg EGp)' = (AF \neg p)'$$

= $AF(e_act \lor \neg p)$
 $\neg (EGp)' = \neg EG(e_qt \land p)$
= $AF(e_act \lor \neg p)$
Hence $(\neg EGp)' = \neg (EGp)'$ (3)

$$\begin{aligned} (\neg E[pUq])' = A[\neg qW(\neq p \land \neg p)]' \\ = A[\neg qW((e_act \land \neg q) \lor (\neg p \land \neg q)] \\ \neg (E[pUq])' = \neg E[(e_qt \land p)Uq] \\ = A[\neg qW \neg (\neg (e_qt \land p) \land \neg q)] \\ = A[\neg qW \neg ((e_act \lor \neg p) \land \neg q)] \\ = A[\neg qW((e_act \land \neg q) \lor (\neg p \land \neg q)] \\ Hence \quad (\neg E[pUq])' = \neg (E[pUq])' \end{aligned}$$
(4)

$$\begin{aligned} (\neg E[pWq])' = A[\neg qU(\neq p \land \neg p)]' & \neg (A \\ = A[\neg qU((e_act \land \neg q) \lor (\neg p \land \neg q)] \\ \neg (E[pWq])' = \neg E[(e_qt \land p)Wq] \\ = A[\neg qU\neg (\neg (e_qt \land p) \land \neg q)] \\ = A[\neg qU\neg ((e_act \lor \neg p) \land \neg q)] \\ = A[\neg qU((e_act \land \neg q) \lor (\neg p \land \neg q)] \\ Hence & (\neg E[pWq])' = \neg (E[pWq])' \end{aligned}$$
(5)

$$(\neg AXp)' = (EX\neg p)'$$

= e_qt \land EX\neg p
$$\neg (AXp)' = \neg (e_qt \Rightarrow AX\neg p)$$

= e_qt \land EX\neg p
Hence (\neg AXp)' = \neg (AXp)' (6)

$$(\neg AFp)' = (EG\neg p)'$$

= EG(e_qt \land \neg p)
$$\neg (AFp)' = \neg AF(e_act \lor p)$$

= EG(e_qt \land \neg p)
Hence (\neg AFp)' = \neg (AFp)' (7)

$$(\neg AGp)' = (EF \neg p)'$$

$$= E[e_qtU \neg p]$$

$$\neg (AGp)' = \neg A[pW(e_act \land p)]$$

$$= E[\neg (e_act \land p)U(\neg p \land \neg (e_act \land p))]$$

$$= E[(e_qt \lor \neg p)U \neg p]$$

$$= E[e_qtU \neg p]$$
Hence $(\neg AGp)' = \neg (AGp)'$ (8)

$$(\neg A[pUq])' = (E[\neg qW(\neg p \land \neg q)])'$$

$$= E[(e_qt \land \neg q)W(\neg p \land \neg q)]$$

$$\neg (A[pUq])' = \neg A[pU((e_act \land p) \lor q)]$$

$$= E[\neg ((e_act \land p) \lor q)W(\neg p \land \neg ((e_act \land p) \lor q))]$$

$$= E[((_act \land \neg q) \lor (\neg p \land \neg q))W(\neg p \land \neg q)]$$

$$= E[(e_qt \land \neg q)W(\neg p \land \neg q)]$$

$$Hence \quad (\neg A[pUq])' = \neg (A[pUq])'$$
(9)

$$\begin{aligned} (\neg A[pWq])' &= (E[\neg qU(\neg p \land \neg q)])' \\ &= E[(e_qt \land \neg q)U(\neg p \land \neg q)] \\ \neg (A[pWq])' &= \neg A[pW((e_act \land p) \lor q)] \\ &= E[\neg ((e_act \land p) \lor q)U(\neg p \land \neg ((e_act \land p) \lor q))] \\ &= E[((_act \land \neg q) \lor (\neg p \land \neg q))U(\neg p \land \neg q)] \\ &= E[(e_qt \land \neg q)U(\neg p \land \neg q)] \\ Hence \quad (\neg A[pWq])' &= \neg (A[pWq])' \end{aligned}$$
(10)

Fig. 1. $K(W_{i+1}, s' \models A[pU((e_act \land p) \lor q)] t'$ and t'' enriches $t \in K(W_i)$ and t' simulates t, r' and r'' enriches $r \in K(W_i)$ and r' simulates t.