
Formalizing the incremental design and verification process of a Pipelined
Protocol Converter

Cécile Braunstein
Université Pierre et Marie Curie

CNRS UMR 7606 - LIP6 - ASIM
12, rue Cuvier

75252 PARIS cedex 5- France
cecile.braunstein@lip6.fr

Emmanuelle Encrenaz
Laboratoire de Spécification et Vérification

CNRS UMR 8643 - ENS CACHAN
61, avenue du Prsident Wilson

94235 CACHAN Cedex - France
emmanuelle.encrenaz@lsv.ens-cachan.fr

Abstract
This work studies the relations between pipeline architec-

tures and their specification expressed in CTL. We propose
a method to build pipeline structures incrementally from a
simple one (already verified) to a more complex one. More-
over, we show how each increment can be integrated in a
CTL specification. We define increments to model treatment
delay and treatment abortion of a pipeline flow, and we for-
malize the composition of the different increments. In or-
der to represent the increments added to an architecture,
we derive a set of CTL formulae transformations. Finally
we model a control flow of a protocol converter by compo-
sition of these increments. We show how CTL properties
of the complex architecture are built by applying automatic
transformations on the set of CTL properties of the simplest
architecture.

1. Introduction

This paper proposes a method to specify and design pro-
tocol converters. Oftentimes, protocol converter devices in-
tegrate pipeline functionality. This is because these convert-
ers are used to connect a component with communication
devices like bus or network on chip which are pipelined.
The difficulty is to design and check the flow control of var-
ious components with various pipeline flows. Our aim is to
propose a method which helps designers to build efficiently
a pipeline flow and provides a set of CTL properties that
represents its specification.

The verification process is accomplished by model
checking ([6]). Although this latest is not adequate to ver-
ify very complex systems, it has been successfully used for
medium-sized systems. More precisely, model-checking
techniques are well-suited for protocols verification. For
instance, successful experiments are described in [15] and
[4] where the specification is expressed in a temporal logic
(CTL or LTL). More recently, the idea of abstracting a com-

ponent by a subset of its specification properties appears as a
new method to alleviate the state space explosion problem.
Xie and Browne in [18] proposed a compositional model
checking process integrating this idea. Each component is
described by an automaton that represents its specification
and it is packed with a set of LTL properties. A component
abstraction is built from these properties and environment
assumptions. Büttner [8] adopts a similar method with CTL
properties in the context of synchronized module composi-
tion. Its abstract model of module is well suited to provide
a cycle accurate abstraction to be used in micro-architecture
verification.

In [5], we defined an incremental design process that is
very close to the way hardware designers proceed: after
having sketched the rough structure of the data part, and its
synchronization in the simplest case, one takes into account
new events (that were supposed not to occur in the previous
steps of the design), and defines the new behaviours they
induce. The new behaviours may not override previously
existing ones, and there is no deletion of behaviours. In the
same paper, we also stated a first set of transformations of
CTL properties, corresponding to the preservation of all the
behaviours previously existing in the simple model into the
augmented model.
In the present paper, we formalize a particular class of in-
crements related to pipeline flow. Then we state new trans-
formations and preservations of CTL properties in this par-
ticular context. We present property transformation related
to the interface of the pipeline but also property transforma-
tion related to the inner part of the pipeline and expressing
isochronous treatments in different pipeline stages in a uni-
fied way.

The results are relevant in the protocol verification con-
text, but they also apply to the microprocessor pipeline.
However, verification of temporal logic properties is not the
classical approach to insure the correctness of a pipelined
complex processor. Various techniques have been proposed

for the verification of pipeline microprocessor design (see
[7, 12, 1, 16]). The main approach compares a specification
representing the sequential machine defined by the instruc-
tion set architecture (ISA) to an implementation pipeline
of the architecture. The proof states that the implementa-
tion conforms to the set of behaviours represented by the
non-pipelined specification. One of the difficulties is to de-
fine observation points where the comparison is meaningful.
The proof is performed with a proof assistant (PVS, ACL2,
HOL,. . .) that requires an important manual effort. Alur and
al. in [9] build their proof with a refinement checker in-
cluded in MOCHA [2] but the designer has to provide a ac-
curate abstraction and different witness modules. The main
drawback of these methods is the strong human interaction
required to build the proof.
In this paper we do not focus on a microprocessor pipeline
because designing a pipeline micro-architecture is not the
major difficulty of microprocessor design anymore. Nowa-
days, the difficulty comes from other mechanisms like re-
ordering buffer or precise exception handling.
However, pipelining an architecture was not an easy task:
researchers have proposed methods to help building such a
processor pipeline. For instance, Huggins and Van Camp-
enhout [10] simplify the design of a processor pipeline
based on the decomposition in a series of steps. At each
step the equivalence between models are manually stated.
Kroening[11] has extended this idea to propose an auto-
matic synthesis of the pipeline of a processor. Our work
revisits the automatic design of pipelines in the context of
protocol conversion, and provides new results in terms of
temporal logic specifications, that was not covered in the
context of microprocessor pipelines.

The paper is organized as follows : section 2, introduces
some definitions related to the incremental design process
and describes the model of the pipeline we deal with; in
section 3, the increments modeling the pipeline flow break-
age are presented, and the structural properties between the
initial model and the incremented ones are proven; conse-
quences on CTL properties are defined in section 4. Sec-
tion 5, firstly, shows how the defined increments can be
composed to build the pipeline flow of a protocol con-
verter between a VCI compliant component (Virtual Com-
ponent Interface [13]) and a PI bus ([14]). Secondly, how
some CTL formulae representing the converter specification
evolve along the design process.

2. Preliminaries

2.1. Incremental Design Process

The incremental design process ([5]), starts from an ini-
tial step where the rough structure of the data-path and the
control part is defined. Then the designer proceeds to the
implementation of the simplest cases up to the most com-

plex ones. This is accomplished by adding new function-
alities without overriding nor deleting previous behaviours.
Our models are represented by a Moore machine.

Definition 1 Each signal is defined by a variable name, s
and an associated finite definition domain Dom(s).

Definition 2 Let E be a set of signals. A configuration c(E)
is the conjunction of the association : for each signal in E,
one associates one value of its definition domain. The set of
all configurations c(E) is named C(E).

Definition 3 A Moore machine M = 〈S, S0, I, O, T, L〉 is
such that S is a finite set of states ; S0 ⊂ S is a finite set of
initial states ; I (resp. O) is a finite set of input signals (resp.
output) with their definition domain ; T ⊆ S×C(I)×S is a
finite set of transitions such that ∀s ∈ S, ∀c ∈ C(I), ∃!s′ ∈
S s.t. (s, c, s′) ∈ T (∃! means ”there exists exactly one”);
and L{l0, . . . , l|O|−1} is a vector of labeling function, each
function defining the value of exactly one output signal in
each state; for each output signal oj we have lj : S →
Dom(oj),

In Appendix A, we give a formal definition of an increment
INC = 〈e, Σ+, T+, O+〉. Intuitively, an increment repre-
sents the reaction of the system to a set of new event e, e. g.
the set of new states, transitions and outputs signals. A new
event is represented by a new1 set of signals added on the in-
put interface of the system. The event may be active or not.
The occurrence of the new event implies new behaviours
and a new set of output signal. This notion is formalized as
follow.

Definition 4 An event e = 〈I+, CACT (I+), CQT (I+)〉 is
such that
• I+ = The set of new input signals and their definition

domain, I ∩ I+ = ∅.
• CACT (I+): The set of configurations representing the

occurrence of the new event. If one such configuration
occurred the event would be said to be active. We de-
note c qt a configuration belonging to CQT .

• CQT (I+): The set of configurations representing the
absence of the new event. If one such configuration
occurred the event would be said to be quiet. We denote
c act a configuration belonging to CACT .

We have CACT (I+)∪CQT (I+) = C(I+) and CACT (I+)∩
CQT (I+) = ∅.
We denote ¬c act ∈ CQT and ¬c qt ∈ CACT .

In the incremented model, all transitions that were in the
simplest model are labeled with a quiet value (c qt). All
transitions at the boundary of the simplest model and the
incremented one, are labeled with an active value (c act).

1This can be extended to model the appearance of new value of existing
signals (see [5])

2

2.2. Pipeline representation

Rdatai

Ci+1

Rdatai+1
Rdatai+2

Ci+2Ci∅ ∅

compi

∅

compi+1

xi xi+1 xi+2

Control part

Event handler

stage i-1

ti+1

External event

Internal event

stage i

ti

stage i+1
Ri Ri+1 Ri+2

Figure 1. Pipeline flow architecture

Figure 1 represents a typical pipeline flow of n stages.
The control part contains a Moore Machine that produces
the multiplexer command (xi) driving the barrier register
(Ri) at the input of each stage. Each state of the Moore ma-
chine represents a configuration of the pipeline stages where
the computation is valid (and then written in the barrier reg-
ister at the beginning of the next stage) or not. Transitions
represent how the pipeline fills. Two sets of registers com-
pose the barrier : one containing command (Ci) and the
other data (Rdatai

) needed for the treatment into a stage.
The event handler generates events stalling or breaking the
pipeline flow from internal or external signals. From the
control part point of view, there is no difference between
external and internal events. Both comes from the event
handler and both disturb the pipeline flow. Note that ex-
ternal event may be induced by another pipeline in case of
superscalar. Data treatment at each stage is represented by
compi and transitions by ti. At each step the register of a
stage may take a new data coming from the previous state,
re-write its content or take an empty operation. An empty
operation does not require any resource and do not disturb
the state of the system.

Formally, the states of the Moore machine of a n stages
pipeline is a vector of xi. We have (x0 . . . xn−1) such that
∀j, xj ∈{0,1,R}. The meaning of these symbols is:

• xj = 0 insertion of an empty operation in Rj .
• xj = 1 insertion of the result of the computation of

stage j − 1 in Rj .
• xj = R re-writing of the Rj’s content in Rj .

We define the set of vectors V k
l = xl, xl+1, ..., xk−1 such

that ∀j, xj ∈{0,1,R}. This represents a contiguous subset
of the pipeline stages ranking from stage l to stage k. Here
are introduced functions representing the prefix or suffix of
a state.

Definition 5 Prefix and Suffix functions.
The function pref: IN × S → V k

0 associates to each state

s and stage number k ∈ IN, the prefix of the state ranking
from 0 to k.
The function suff: IN × S → V n

k+1 associates to each state
s and stage number k ∈ IN, the suffix of the state ranking
from k + 1 to n − 1.

The notion of data progression inherent in pipeline flow
is defined by the progress function, formalized as follow :

Definition 6 Progress function.
The function progressk,l: {0, 1}×V l

k → V l
k is the right shift

of any element in V l
k of 1 slot with either 0 or 1 injected

in xk
2.

3. Incremental design of Pipeline flow

In the following, we present the machine with regular
flow. Then, we define the increments necessary to represent
breakage and interrupts.

3.1. Optimal flow

The simplest architecture is modeled by a Moore ma-
chine Mo = 〈So, S0o

, Io, Oo, To, Lo〉. It is the implementa-
tion of an optimal flow (no event disturbs the flow).

In this case we consider that no event stalling a stage or
freezing the pipeline may occur : the pipeline flow is regular
and by consequence all states are labeled with an unique
succession of consecutive 1.

Let t be in To, t is the conjunction of elementary tran-
sitions ti, each occurring at a given stage i of the pipeline,
and potentially driving register Ri. t ∈ To if and only if
it is defined as definition 7. Let be s = (xj)j∈[0;n−1], s′ =
(x′

j)j∈[0;n−1] and s′′ = (x′′
j)j∈[0;n−1] then we have the fol-

lowing rules :

Definition 7 Transition rules associated to an optimal flow:

R1 After a 0, only 0 may enter the pipeline, except for the
initial state : If x0 = 0 and if s 6∈ S0o

then ∃t ∈ To

and ∃c ∈ C(Io) such that t = (s, c, s′) and
s′ = progress(0, s)

R2 Normal progression : there exists transitions with a
new instruction or an empty operation entering the
pipeline : If x0 = 1 or s is the initial state then
∃t ∈ To and ∃c ∈ C(Io) such that t = (s, c, s′) and
s′ = progress(0, s) and ∃t′ ∈ To ∃c′ ∈ C(Io) such
that t′ = (s, c′, s′′) and
s′′ = progress(1, s).

2When there is no ambiguity, indexes k and l of progress will be re-
moved.

3

3.2. Stall Increments applied to a pipeline flow

The possible increments for a pipeline flow can be of two
types. The first type is an event, named stall, that in-
troduces deceleration in the pipeline flow. This is the case
when the pipeline waits for a condition like a cache miss or
a ready acknowledgment. The second type, named kill,
concerns the pipeline flow breaks or reset.

3.2.1 Single Stall

An event can stall a stage and all the stages upstream, the
stages downstream progress and the stalled stages re-start
as soon as the stalling condition is not active anymore.
The stalling condition is modeled by an event stallk =
〈stallk, stallk act, stallk qt〉.
When stallk occurs then the (k + 1)th stage executes an
empty operation; in all stages l > k, the flow progresses;
in stages l ≤ k, the flow does not progress : each register
Rl re-writes the value it previously stored. When stallk

becomes inactive then the normal progression takes place
(as defined by Rule R2). These new behaviours are mod-
eled in a new Moore Machine Ms obtained by applying the
incremental design process to Mo. Below we define the in-
crement transforming Mo to Ms.

Definition 8 Transition rules associated to stallk in Ms:
Let s be a state in So.
R3 Existing transitions have their guards strengthened by

stallk qt : ∀s′ ∈ So,s.t. ∃t = (s, c, s′) ∈ To, then
∃t′ ∈ Ts s.t. t′ = (s, c ∧ stallk qt, s′)

R4 The upstream of the pipe is frozen : ∃s′′ 6∈ So, s.t.
∃t = (s, stallk act, s′′) and

(a) ∀x′′
j ∈ pref(k, s′′): x′′

j =

{

R if xj = 1
0 if xj = 0

(b) suff(k, s′′) = progress(0, suff(k, s))

Let be s ∈ Ss \ So.
R5 After being unfrozen, progression is normal : ∃s′ s.t.

(s, stallk qt, s′) and s′ is obtained by Rule R2.

R6 The downstream of the pipeline progresses : ∃s′′ s.t.
(s, stallk act, s′′) and

(a) pref(k, s′′) = pref(k, s),

(b) suff(k, s′′) = progress(0, suff(k, s))

We state properties characterizing the flow of each stage
between M0 and Ms needed for the CTL properties trans-
formations..
Notation : x → x′ means ∃c ∈ C(I) and (x, c, x′) ∈ T .
σ = y . . . y′ is the path from y to y′ such that y → y0,
y0 → y1, . . ., yk → y′.

Property 1 Suffix progression.
Let be a stall occurring at stage l or lower, inducing the

machine Ms from Mo. Let Rl be a binary relation in So×Ss

such that: x Rl y iff suff(l, x) = suff(l, y). ∀x′ ∈ So s.t.
x → x′, ∃y′ ∈ Ss s.t. y → y′ and x′Rl+1y

′.

PROOF: By construction of Ms

Unfortunately, Rl+1 is not included into Rl, thus it is not
a strong bisimulation [3]. Hence this property is local to the
stall and expresses the progression of the suffix downstream,
whenever the flow is broken upstream or not.

Property 2 Prefix weak bisimulation.
Let be a stall occurring at stage l or higher, inducing the

machine Ms from Mo. Let Rl be a binary relation in So×Ss

such that: xRl y iff pref(l, x) = pref(l, y). Rl is a weak
bisimulation [3].

PROOF: We have: ∀x′ ∈ So s.t. x → x′, ∃y′ ∈
Ss s.t. σ = y . . . y′ and x′Rl+1y

′. As pref(l + 1, x) =
pref(l + 1, y) ⇒ pref(l, x) = pref(l, y), Rl+1 is included
into Rl.
∀y′ ∈ Ss s.t. y → y′ s.t : x → x′ and x′ = y′ (when y is not
stalled and reads stalll qt), or (when y reads stalll act) x

Rl y′ and y′ . . . y′′ and x′ Rl+1 y′′. Rl+1 is included into Rl.

This property formalizes that the prefix of the pipeline do
not progress and is not destroyed while a stall is active.

Property 3 Stuttering progression.
In Mo: We have σ = s0s1...sn such that in sn: V n+k

l =
progressn(V k

0).
In Ms: Let stallk be a stalling action occurring at
stage k. Then ∃σ′ = s∗0s1...sn such that sn: V n+k

l =
progressn(V k

0).

PROOF: This is a direct consequence of rule R5 (as-
suming that the stalling action always terminates).
This property formalizes that after being frozen, the prefix
will progress(as it did in the previous model).

3.2.2 Composition of Stall Increments

In section 3.2.1 we described the behaviours of the stepped
up machine when taking into account the delays induced by
a unique stall. However, it is possible to have a combina-
tion of events inducing stalls occurring at different stages.
We define new transitions rules to model the dealing with
multiple stalls. The transition rules are quite similar to the
single stall increment we have seen before. But now, the in-
crement that affects the highest stages has a greater impact
on the pipeline flow, than the increment concerning lower
stages.

Definition 9 Set of Stalls.
Let be F = {k | k ∈ [0, n − 1]} the set of stages where a
stall currently occurs.

4

Let M ′
s be the machine obtained by applying on the ma-

chine Ms that contains already some stalls (defined in Fs),
a new stall at stage k s.t k > max(Fs). Fs is increased with
k: F ′

s = Fs ∪ {k}. M ′
s is composed of states in S ′

s ⊃ Ss

Definition 10 Transitions rules associated to M ′
s.

Transitions in T ′
s ⊃ Ts are defined s.t.:

• Let s be a state in Ss ∩ S′
s. Its previously existing tran-

sitions are modified according to rule R3 with value
stallk qt.

• M ′
s has got one new transition respecting rule R4 with

value stallk act.

• Let be s ∈ S′
s \ Ss,

1. either s is the source state of the transition ob-
tained by rule R6.

2. or R5’ After being unfrozen the entire pipeline
progresses : ∃s′ ∈ S′

s s.t. (s, c ∧ stallk qt, s′)
with c equal the conjunction of all stalll qt ∀l ∈
F \ {k} and s′ is obtained by Rule R2 (either a 0
or a 1 is injected at stage 0).

3. or R7 The downstream of the pipeline defined by
the active stall progresses : ∀l ∈ F \ {k}, ∃s′′ ∈
S′

s s.t. (s, c ∧ stallk qt, s′′) with
c =

∧

∀j∈[k;l[stallj qt ∧ stalll act and with s′′:

(a) pref(l, s′′) = pref(l, s)

(b) suff(l, s′′) = progress(0, suff(l, s)).

Remark 1 When we introduce a new increment stallk

occurring at a stage k < max(Fs) the active configuration
is now ∀l ∈ Fs and l > k, stalll qt∧stallk act. This is be-
cause if a higher stall stalll is active, no matter stallk

is also active, stalll freezes pref(l, s), that encompasses
pref(k, s).

Property 4 (Extension of property 2 in case of multiple
stalls). Let be a machine M ′

s obtained by multiple stall
increments from Mo, having a set of stalls F ′

s. Let be
l ≤ min(F ′

s). Let Rl be the relation in So × Ss: x Rl y iff
pref(l, x) = pref(l, y).

1. Rl is a weak bisimulation.

2. ∀ j > l, Rj is not a weak bisimulation.

PROOF: (sketch) The proof of the first statement pro-
ceeds as for the single stall increment case (property 2).
The idea of the proof of the second statement is the follow-
ing: In case of a single increment at stage l, the stages rank-
ing from 0 to l−1 have the same progression: either they are
fixed (while stalll act), or they progress at the same speed
(when stalll is not active anymore). This is captured by

the weak bisimulation of the prefix Rl and the stuttering pro-
gression property. If l > min(Fs), then there exists a stall
, say k < l splitting the interval [0; l[of stages into [0; k],
where the behaviour is frozen until stallk is removed,
while the stages ranking from k to l−1 may progress. Hence
the similarity of behaviours of stages in [0, l] are not cap-
tured in Rl anymore but in Rk (that is included in Rl), and
the stuttering progression property.

3.3. Kill Increment

A kill action destroys the treatment performed at a given
stage, but the pipeline flow is not disrupted. The kill action
is the basic operation performed in case of retract, reset, ex-
ception or interrupt. We will show in section 5 how kills are
used to manage these events.

In our representation, a kill action consists in replacing
the ”1” corresponding to the progression of the treatment
by an empty operation ”0” that discards the result of the
treatment.

Definition 11 Let Ms be a machine, a kill event occurring
at stage k induces the following machine Mk: Sk ⊃ Ss and
Tk is defined such that:

1. ∀t ∈ Tk, t = (s, c, s′), t is changed into (s, c′, s′) with
c′ = c∧ killk qt.

2. ∀s ∈ Ss ∩ Sk, ∃s′ ∈ Sk and (s,killk act,s′) ∈ Tk

and s’ is defined s. t. :
x′

0 = 0 or 1, xk = 0 and ∀i 6= k, x′
i = xi−1.

4. Consequences on CTL formulae

The specification of our pipeline is a set of CTL formu-
lae. The incremental design characteristic is to guarantee the
non-regression of an implementation by construction. Here,
the regularity of a pipeline flow, enables us to be more pre-
cise. For some class of formulae we can directly derive a
part of the specification of the new implementation.
This section gives results on CTL property preservation or
transformation between a reference machine and the one ob-
tained by a composition of increments. We show that global
behaviours are preserved when stalling actions are added,
e.g. when a command enters, a result will be produces later
and it is guaranteed by construction. Moreover, specifica-
tion related to inner part are preserved if the formulae con-
cern a unique stage or a disjunction of stages. Nevertheless,
adding stalling actions does not preserve the specification
about conjunction of stages. But in this case, we state a
new property transformation. The present section is orga-
nized as follow : in a first part, we consider properties with
atomic propositions inside the pipeline. In a second part, we
focus on properties concerning the macroscopic treatment
performed by the pipeline.

5

4.1. Properties related to the inner parts of the
pipeline

From [5], the general transformations capturing the
preservation of the behaviours of Ms in M ′

s due to any in-
crement hold. From the previous paragraphs, properties and
labelprop:conjonction hold.

Let Ms be a machine obtained by composition of stall
increments applied to Mo, and Fs be the set of associated
stalls. Let M ′

s be the machine obtained by composition of
stall increments applied to Ms and F ′

s(⊃ Fs) be the set of
associated stalls. We name φk (resp. φl) an atomic proposi-
tion (or its negation) related to a stage k (resp. l) in Ms.

Property 5 Let f and g be any positive CTL formula with-
out any terms in the following form : (φl∧φk) or (¬φl∧φk),
∀l, k ∈ [0, n].
Let Ms,s |= f , we have M ′

s,s |= f .

PROOF: (Sketch) This is due to the weak prefix bisim-
ulation and the stuttering progression: let φk (resp. φl) be a
formula with atomic propositions related to stage k (resp.
l), for any CTL\X operator OP, the formula of the form
OP(φk)(resp. OPφl) are preserved. Their disjunction is then
preserved, and positive formulas built on their disjunction
are also preserved. This is not true for the conjunction of
atomic proposition concerning different stages (second item
of property 4).

Property 6 Let f and g be any positive CTL formula with
conjunction of atomic propositions. We have the following
properties for k < l and a CTL\X operator OP:

1. if 6 ∃ i ∈ F ′
s s.t. i ≥ l, then Ms,s |= f⇒ M ′

s,s |= f .

2. if ∃ i ∈ F ′
s s.t. i < l, and if ϕ = OP (φk ∧ φl) then

Ms,s |= ϕ ⇒ M ′
s,s |= ϕ′ and ϕ′ = OP (AF (φl) ∧ φk)

PROOF: Direct consequence of properties 3 and 4.

4.2. Properties related to the outer parts of the
pipeline

The environment of the pipeline is viewed as a set of ac-
tions composed of commands producing results. In case of
a VCI-PI protocol converter, it is composed of the set of
VCI commands and of VCI responses. In case of a pro-
cessor, the environment is composed of instructions on the
software visible registers plus the program counter, instruc-
tion and exception registers, and the memory.

The environment is abstracted by a set E =
{(Cmdk , Resk)}, where couples (Cmdk ,Resk) denotes
the kth command and its induced result. The causality be-
tween commands and results, and the interleaving of several
actions are modeled by a set of CTL\X properties.

A command Cmdk entering the pipeline may be expressed
as: φ0,k = (x0 = 1∧Ci = Cmdk). Ci denotes the contents
of a register in stage i. The end of the computation induced
by Cmdk is expressed by: φn−1,k = (xn−1 = 1 ∧ Cn−1 =
Cmdk)

Example : A causality relation between Cmdk and
Resk , expressed on the environment as Cmdk ⇒ AF
Resk is transposed as: φ0 ⇒ AF (φn−1 ∧ AFResk).

Property 7 All positive CTL\X formulas with atomic
propositions in E, that are true in Mo, are also verified in
any machine obtained by composition of stall increments.

PROOF: This is a direct consequence of property 5 that
preserves positive CTL\X formulae when atomic proposi-
tions concern disjunction of stages (here concerned stages
are 0 and n − 1).

In case of a kill increment in a stage i, the killed com-
mand does not produce a result. In case of occurrence of
a similar command not concerned with the kill event (in a
different stage), a result similar to the one destroyed by the
kill will be produced.

A causality property expressed as Φk = φ0,k ⇒
AF (φn−1,k ∧ AF Resk) can be transformed in the follow-
ing form :

Φ′
k =¬killi ∧ φ0,k ⇒

A(¬killiU(Resk ∨ (1)
(killi

∧

l∈[0;n−1]

(¬φl,k) ⇒ AF ¬Resk) ∨ (2)

(killi
∨

l∈[0;n−1]

(φl,k) ⇒ AF Resk)) (3)

Line (1) expresses that there exists some path where killi
is never true due to the incremental design rules. Line (2)
says that if a kill event occurred and no stage contains the
command then the associated result is not produced. Line
(3) corresponds to the occurrence of a similar command that
produces a similar result.

5. Incremental design of the VCI-PI wrapper

In [5] we show how CTL property could be automati-
cally transformed from a simple component in order to de-
rive a part of the specification of a more complex one. Now,
we want to take advantage of the increment particularity in-
duced by the pipeline structure of the wrapper VCI-PI. In
this part, we briefly recall the wrapper structure and then
show how the formulae are transformed or preserved ac-
cording to properties of section 4 along the incremental de-
sign of the pipelined protocol converter.

The conversion between PI-bus and VCI protocols is re-
alized by a component named a VCI-PI wrapper. A wrapper

6

VCI interface

cmd
cmd val

cmd eop
cmd ad
cmd ack
cmd data
rsp val
rsp eop
rsp ack
rsp data

VCI-PI

pi req
pi gnt

pi ad
pi opc
pi lock
pi data
pi ack

PI bus interface

Master Wrapper

Figure 2. VCI and PI interfaces of our set of master wrap-
pers

P
I

B
U
S

VCI-PI

slave
wrapperINITIATOR

VCI VCI-PI

master
wrapper

VCI

TARGET

Arbitrer

Bus

(5)

(3)

(4)

(2)
(3)

(1)

(10) (9) (8) (7)

(6)

Figure 3. The Platform performing the VCI-PI-VCI trans-
lation and illustration of a VCI transfer

is a core wrapping device implementing a given interface.
In our context, the IP-core is supposed to be VCI compliant
[13] and the considered wrapper is an adapter between the
VCI interface and the PI-bus protocol [14]; hence we are
able to connect various IP-cores through a PI-bus. PI pro-
tocol distinguishes the component initiating a bus transfer,
named master, and the component responding to a transfer,
named slave. An IP-core may have both master and slave
functionalities. Figure 2 illustrates the major signals han-
dled by interfaces of a VCI-PI master wrapper.

Using the incremental design process approach, we de-
veloped a set of nine master VCI-PI wrappers, from a very
simple one supposing that the VCI initiator and the PI target
will always acknowledge in one cycle, up to the most com-
plex one supporting delays, retract and reset events sent by
the VCI initiator or the PI target. The hierarchy of the nine
master wrappers is shown in Figure 4.

The behavior of the simplest wrapper (model A) is a 3-
stages pipeline, performing at the same time:

(stage 1) accepting a VCI request k to be sent to PI from its
VCI interface,

(stage 2) sending the PI request corresponding to the k −
1th VCI request on its PI interface,

(stage 3) accepting the PI response to the k − 2th VCI re-
quest on its PI interface.

In the following, we show step by step how we build a wrap-
per C” and a part of his specification from the wrapper B.
The architecture is described in synchronous Verilog, and
the specification is checked with the model checker VIS ver-
ification tool [17].

STEP 1 : (Wrapper B) We implemented a platform as
described in Figure 3. We written and checked about 80
CTL formulae related to the master wrapper B, the slave
wrapper B and the complete system (when the VCI initiator
and target may generate delay events).

STEP 2 : (Wrapper B’) We fit the platform in order to
plug a wrapper B’. The wrapper B’ can handle delays from
the initiator. The increment applied is the composition of
two stall increments. The first one stalling stage 1 and the
other one stalling the stage 3. We reinforce our results by
re-checking the set of all formulae written for the wrapper
B. Of course, we transformed the formulae following the
properties stated in section 4. In practice, it is not useful to
re-check formulae, we can obtain the new set of formulae
by applying the increment rules and the properties transfor-
mation or preservation.

STEP 3 : (Wrapper C’) We incremented the wrapper
B’ to wrapper C’. Wrapper C’ can support retract from the
target. It corresponds to a new behaviour that breaks the
pipeline flow. This new event induces a kill increment to
stage 1 and a stall increment to stage 2. We fit the platform
and transform the formulae. The formulae with all atomic
proposition corresponding to the suffix are transformed with
properties 6 or 5. The others are transformed with the prop-
erty stated in [5].

STEP 4 : (Wrapper C”) We added the new event reset,
it kills all requests that were in the pipeline. We add 3 in-
crements, one for each stage of the pipeline. In this case the
formulae have to be transformed with the causality prop-
erty stated in paragraph 4.2. Formulae can be automatically
added to insure the preservation of non-reseted models into
reseted one. These formulae state that after a reset occur-
rence, the converter returns into idle state and the pipeline
is empty.

We have built a model which is guaranteed to behave ac-
cording to pipeline and its specification as a set of 80 CTL
formulae. One can pick some of them to build abstraction
to alleviate the verification process of global properties as in
[18].

6. Conclusion

On the one hand, we have formalized an incremental
method that is very close to those used by the designers. Our
approach decomposes the complexity of building a pipeline
flow from scratch by adding the different increments one by
one. The designer has got a framework to focus on one dif-
ficulty at a time. Moreover this technique is not regressive,
all behaviours of the component are preserved when a new
increment is added.

On the other hand we have shown that this method au-
tomatically derives the specification of a component from
the specification of a simpler component. This specifica-
tion is integrable into a general symbolic model checking

7

Target is always ready
pi rsp=RDY

Target may impose
wait states

pi rsp={RDY,WAIT}

Target may impose retract

pi rsp={RDY,WAIT,RTR}

Type of event considered
Initiator is alway ready

cmd val=1; rsp ack=1
Initiator may impose wait states

cmd val={0,1}; rsp ack = {0,1}
Initiator may reset

reset = {0,1}

B

A

C C’

B’

A’ A”

B”

C”

Figure 4. Hierarchy of VCI-PI wrappers ranking from A to C”. Each arrow corresponds to an increment whose associated event is
an extension of the definition domain of one or more signals.

process. By exploiting the behavioural characteristics that
distinguish pipelines from other circuits we have particular-
ized the pipeline increments and stated new CTL formulae
transformation or preservation results. These transforma-
tions capture the behaviour that already existed and charac-
terize the added behaviours.

The approach we propose can be viewed of two differ-
ent ways. Either the component is built applying the incre-
ments, it is guaranteed to respect the new specification, and
it can be plugged as it is in a more complex system, its spec-
ification being used for compositional verification (assume-
guarantee). Or the design is manually augmented (step by
step) and the new specification is the one that the system has
to comply with.

The set of CTL properties automatically obtained with
this incremented design process, exactly captures the incre-
ments successively added. It is the basis for an abstraction
of each module by a subset of its formulae in order to alle-
viate the model checking verification process.

References

[1] M. Aagaard. A Hazards-Based Correctness Statement for
Pipelined Circuits. In CHARME’03, volume 2860 of LNCS,
pages 66–80. Springer-Verlag, 2003.

[2] R. Alur, T. A. Henzinger, F. Mang, S. Qadeer, S. Rajamani,
and S. Tasiran. MOCHA: Modularity in Model Checking.
In CAV’98, volume 1427 of LNCS, pages 521–525, London,
UK, 1998. Springer-Verlag.

[3] A. Arnold. Finite Transition Systems: Semantics of Commu-
nicating Systems. Prentice Hall International Ltd., Hertford-
shire,UK, 1994. Translator-John Plaice.

[4] M. Bozga, J.-C. Fernandez, A. Kerbrat, and L. Mounier. Pro-
tocol Verification with the ALDÉBARAN Toolset. STTT,
1(1-2):166–184, 1997.

[5] C. Braunstein and E. Encrenaz. CTL-Property Transforma-
tions along an Incremental Design Process. In AVOCS’04,
volume 128 of Electronic Note in Computer Science, pages
263–278. Elsevier, 2004. to appear in STTT.

[6] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang.
Symbolic Model Checking: 10

20 States and Beyond. In-

formation and Computation, 98(2):142–170, 1992. Special
issue for best papers from LICS’90.

[7] J. Burch and D. Dill. Automatic Verification of Pipelined
Microprocessors Control. In D.L. Dill, editor, CAV’94, vol-
ume 818 of LNCS, pages 68–80, Standford, California, USA,
1994. Springer-Verlag.

[8] W. Büttner. Is formal verification bound to remain a junior
partner of simulation ? Invited talk, CHARME’05, 2005.

[9] T. Henzinger, S. Qadeer, and S. Rajamani. You Assume,
We Guarantee: Methodology and Case Studies. In CAV’98,
volume 1427 of LNCS, pages 440–451, London, UK, 1998.
Springer-Verlag.

[10] J. Huggins and D. V. Campenhout. Specification and Ver-
ification of Pipelining in the ARM2 RISC Microprocessor.
ACM Transactions on Design Automation of Electronic Sys-
tems, 3(4):563–580, 1998.

[11] D. Kroening and W. Paul. Automated Pipeline Design. In
DAC ’01: Proceedings of the 38th conference on Design Au-
tomation, pages 810–815. ACM Press, 2001.

[12] P. Manolios and S. Srinivasan. Automatic Verification of
Safety and Liveness for XScale-Like Processor Models Us-
ing WEB refinements. In DATE ’04, pages 168–174, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[13] On-Chip Bus Development Working Group. Virtual Compo-
nent Interface Standard (VCI). VSI Alliance, 2000.

[14] Open Microprocessors System Initiatives. OMI324: PI-Bus
Standard Specification. Siemens, Munich, Germany, 1994.

[15] H. Peng, S. Tahar, and F. Khendek. Comparison of SPIN and
VIS for Protocol Verification. STTT, 4(2):234–245, 2003.

[16] J. Sawada and W. Hunt. Trace Table Based Approach
for Pipeline Microprocessor Verification. In CAV’97, vol-
ume 1254 of LNCS, pages 364–375, London, UK, 1997.
Springer-Verlag.

[17] The VIS group. VIS : A System for Verification and Synthe-
sis. In International Conference on Computer-Aided Verifi-
cation, volume 1102 of Lecture Notes in Computer Science,
pages 428–432. Springer-Verlag, 1996.

[18] F. Xie and J. C. Browne. Verified systems by composi-
tion from verified components. In ESEC/FSE-11: Proceed-
ings of the 9th European software engineering conference
held jointly with 11th ACM SIGSOFT international sympo-
sium on Foundations of software engineering, pages 277–
286, New York, NY, USA, 2003. ACM Press.

8

7. Appendix

(Not intended to appear in the final version)

A Increment Definition

Definition 12 An increment is a 4-tuple where INC =
〈e, Σ+, T+, O+〉

e : the event defined above.

Σ+ : the set of new reachable states. Σ+ ∩ S = ∅

T+ ⊆ (S × C(I ∪ I+) × S) ∪ (S × C(I ∪ I+) × Σ+) ∪
(Σ+ × C(I ∪ I+) × Σ+) ∪ (Σ+ × C(I ∪ I+) × S) :
The set of new transitions composed with the transi-
tions present in M and the new ones introduced by the
active configurations.

• each transition (s1, c, s2) in T will have its input
configuration extended with a sub-configuration
of the new input signals belonging to CQT (I+) :
there exists (s1, c

′, s2) s.t. c′ ∈ C(I)×CQT (I+)
and the projection of c′ on I equals c. In the
following we will write c′ = c ∧ c qt, c qt ∈
CQT (I+).

• each transition (s1, c, s2) in T+∩(S×C(I∪I+)×
Σ+∪S×C(I∪I+)×S) will have its input config-
uration extended with a sub-configuration of the
new input signals belonging to CACT (I+) : there
exists (s1, c

′, s2) s.t. c′ ∈ C(I) × CACT (I+).
In the following we will write c′ = c ∧ c act,
c act ∈ CACT (I+).

O+ : the set of new output signals and their definition do-
main, with :

• CACT (O+): The set of configurations represent-
ing the activation of the output.

• CQT (O+): The set of configurations represent-
ing the non-activation of the output.

The output functions associated to O+ returns a con-
figuration in CQT (O+) for all states that were in S.

B Properties

B.1 Property 5

Let f and g be any positive CTL formula without any
terms in the following form : (ϕl∧ϕk) or (¬ϕl∧ϕk), ∀l, k ∈
[0, n]. The formulae is built from the following rules :
• p = φk | φk ∨ φl | TRUE | FALSE

• fp = A p Ufp | A fp Up | E p Ufp | E fp Up |
AGp | EGp | AGfp | EGfp

• f = A fp Uf | A f Ufp | E fp Uf | E f Ufp |
A f Ug | E f Ug | AGf | EGf | f ∨ g | f ∧ g

B.2 Property 6

Let f and g be any positive CTL formula with conjunc-
tion of atomic propositions. The formulae is built from the
following rules :
• p = φk | φk ∧ φl | TRUE | FALSE

• f = Ap Uf | Af Up | Af Ug | Ep Uf |
Ef Up | Ef Ug | f ∨ g | f ∧ g

9

