
Cours de C++

Programmation orientée objets

Cécile Braunstein
cecile.braunstein@lip6.fr

Cours de C++ 1 / 14



Programmation oriented object (POO)

Advantages
• Re-use
• Modularity
• Maintainability

Language oriented object
Before :

• Data more or less well
organised

• Functions and computation
applied on these data

• A program is a following of
affectation and computation

POO :
• Modules (classes)

representing data and
functions

• A program is a set of objects
interacting by calling their
own functions(methods),

Cours de C++ 2 / 14



Concepts

Objects
An object is a recognizable element characterized by its structure
(attributes) and its behavior (methods)

Û Object = Class instance

Class
Groups and creates objects with the same properties (method and
attributes).
Class members :

• Attributes : define the domain of value
• Methods : define behavior ; set of function modifying the state of

an object
A class has got at least one attribute and two methods (create and
delete)
Cours de C++ 3 / 14



Information hiding

Purpose
Restrict access to a class by its interface

• Put constraints for the use and the interaction between objects.
• Programmer see only a part of the object corresponding to its

behavior
• Help updates and changes for a class.

Class has two parts
• An interface : access for external users,
• Internal data and internal implementation.

Cours de C++ 4 / 14



Inheritance

Models the dependency between classes
• Allows re-use of class property by specialization
• Programming by incremental refinement

B derives from A
B has got at least all A’s members.

• All B object are also A object,�
A x;
B y;
x = y; // ok, y is of type B so of type A
y = x; // ko x is not of type B� �

• All A’s members are members of members of B without
declaration or implementation

• B may add new functionality, it’s a specialization of A
Cours de C++ 5 / 14



Defining new types in C++
Create our types

�
struct Student_info{

std::string name;
double partiel, final;
std::vector<double>

homework;
};� �

�
struct Student_info{

std::string name;
double partiel, final;
std::vector<double>

homework;

std::istream& read(std::
istream&);

double grade() const;
};� �

Usually written in a header file.

Create interface
Our Goal :

• Hiding implementation details
• Users can access only through functions

Cours de C++ 6 / 14



Member functions
read

�
istream& Strudent_info::read(istream& in)
{

in >> name >> partiel >>final;
read_hw(in, homework);

}� �
Particularities

• The name of the function Strudent_info::read

• No object Strudent_info in parameters list
• Direct access to data elements of our object

Cours de C++ 7 / 14



Member functions
grade

�
double Student_info::grade() const
{
return ::grade(partiel,final,homework);

}� �
What’s new ?

• grade is a member of Student_info : implicit reference to the
object

• ::grade : insists that we use a function that is not a member of
anything

• and const?

Cours de C++ 8 / 14



Const member function

�
double Student_info::grade() const {...} //new
double grade(const Student_info&) {...} //old� �
Const

• In the old version we ensure that the grade function do not change
the parameter

• In the new version, the function is qualified as const

• grade can be applied to a const or noconst object
• read cannot be call by a const object

Cours de C++ 9 / 14



Protection

�
class Student_info{
public:
//interface
double grade() const;
std::istream& read(std::istream&);

private:
//implementation

std::string name;
double partiel,final;
std::vector<double> homework;
};� �

Cours de C++ 10 / 14



Protection label

Each protection label defines the accessibility of all members that
follow the label.

labels
They can appear in any order

• private : Inaccessible members
• public : accessible members

struct or class?
There is no difference except :

• default protection : private for a class ; public for struct.
• by convention : struct for simple data structure

Cours de C++ 11 / 14



Constructor

Definition
• Special member functions that defines how object are initialized.
• If no constructor are defined the compiler will synthesized one for

us.
• They have the same name as the name of the class itself
• They have no return type�

class Student_info{
Student_info(); //construct an empty object
Student_info(std::istream&); // construct by reading a

stream as before
};� �

Cours de C++ 12 / 14



The default constructor

The one without argument.�
Student_info::Student_info():partiel(0),final(0) {}� �
Constructor initializer
When we create a new class object :

1 The implementation allocate memory to hold the object
2 It initializes the object using initial values as specified in an

initializer list
3 It executes the constructor body

Cours de C++ 13 / 14



Destructor

�
class Student_info{
~Student_info();
};� �
Definition

• Free the allocated memory
• Only one in a class
• Can be synthesized if it doesn’t exist

Cours de C++ 14 / 14


	Title
	Intro
	Concepts
	Information hiding
	Inheritance


