
Cours de C++

Utilisations des conteneurs

Cécile Braunstein
cecile.braunstein@lip6.fr

Cours de C++ 1 / 6



Introduction

Containers - Why ?
• Help to solve messy problems
• Provide useful function and data structure
• Consistency between containers

Containers
• Collection of objects
• Each containers type is optimized for a specific use

(access/modification).
• Main containers :
list, vector, stack, queue, map

Cours de C++ 2 / 6



Container’s properties

• Containers have their own elements
• Elements of a container have to support the copy and assigment

instruction (=)
• All containers have a method empty() and size() in constant

time
• All containers have a method begin() and end()

Cours de C++ 3 / 6



Container’s type

list
• Insert and remove anywhere in constant time
• Automatic memory management

vector
• General purpose
• Fast access by index (constant time)
• Insert and remove an element at the end in constant time
• Other insert and remove in linear time

set, map
• Access an element by a key in constant time
• Fast search of an element

Cours de C++ 4 / 6



How to choose ?

What is the purpose ?
• How we want ot access the element (randomly, in one order ...)
• Which modification on the collection of data (add/remove

elements, sort ...)

Programm performance
• Access time/ Modification time
• Time depends on the number of elements
• Types of times : linear, log, exponential ...
• Memory usage ...

Cours de C++ 5 / 6



How to access element ?

Iterator Purpose
• Pointer generalization
• Use for a sequential access to elements
• Optimisation regarding the container’s type

Iterator Definition
An iterator is a value that

• Identifies a container and an element in the container
• Lets us examine the value stored in that element
• Provides operations for moving between elements in the container
• Restricts the available operations to correspond to what the

container can handle efficently

Cours de C++ 6 / 6



First example

�
vector<double> hw;
read_hw(cin,hw);

vector<double>::size_type
i;

for(i = 0; i != hw.size();
++i)

{
cout << hw[i] << endl;

}� �

�
vector<double> hw;
read_hw(cin,hw);

vector<double>::iterator
iter;

for(iter = hw.begin();
iter != hw.end(); ++iter)

{
cout << *iter << endl;

}� �

Cours de C++ 6 / 6


	Title
	Containers in general
	Iterator

