rs de C++

Cours de C++

Fonctions génériques

Cécile Braunstein
cecile.braunstein@lip6.fr

P lytech'Paris-UPMC

1/17

Pclytech'Paris-UPMC
Template functions

Objects of different types may nevertheless share common behavior

Generic functions
e Have one definition for a function family
e Parameters types and/or return type can be unknown
¢ Type is determined when the function is called

#include <algorithm>

iterator find(iterator, iterator, val);

Works for any appropriate types in any kind of containers

Cours de C++ 3/17

Pclytech'Paris-UPMC

How does it work ?

Language responsibilities
The ways in which uses a parameter of unknown types constrain the
parameter’s type.

[f(x,y)=x+y J

e Requires that + is defined for x and y

¢ When the function is called, the implementation check for the
compatibility

STL responsibilities

When a generic function is defined with iterator.
= Constraints the operation that the type support

Cours de C++ 5/17

Pclytech'Paris-UPMC
Syntax

template <class type-param [, class type-param] ...>
ret-type function-name (param-1list)

Template parameters
e Works like variable but for a type
e Let us write programs in term of common behavior

Cours de C++ 7117

Pclytech'Paris-UPMC

First template function in C++

Exercice
Write a template function for the median function

Cours de C++ 9/17

Pcilytech’Paris-UPMC
First template function in C++

Exercice
Write a template function for the median function

template <class T>
T median (vector<T>)

{

typedef typename vector<T>::sizetype vec_size;

vec_size size = v.size();
if (size==0)
throw domain_error ("median of an empty vector");
sort (v.begin(),v.end());
vec_sz mid = size/2;
return size%2 == 0? (v[mid]+v[mid-1]1)/2 : v[mid];

}
Cours de C++ 9/17

Pclytech'Paris-UPMC

Instantiation

vector<int> v;

int a = median(v);

Instantiates a template
The implementation will effectively create and compile an instance of
the function that replaces every use of T by int.
e Templates don’t slow down the application speed.
e The more template instances there are, the bigger the
application’s code gets.
e The template code is not completely compiled before its use.

e Errors may occur at run time
¢ All types don’t match for a given template
o Be careful with the automatic conversion of types (cast)

Cours de C++ 11/17

Pclytech'Paris-UPMC

Template functions for sequential containers
Algorithm standard library

Goal : Write function that deals with any values stored in any kind of
containers.

Using iterators

[find(c.begin(),c.end(),val) J

e We can write a single function for any contiguous part of any
containers.

e We can look in part of containers only.
e We can access element in different order.

Algorithms can be data-structure independent by using iterator.

Cours de C++ 13/17

Pcilytech’Paris-UPMC
Iterators and algorithms

Iterators particularities
e Containers don’t support all the same operations
o Different lterators offer different kinds of operations

e The library defines five iterator categories that corresponds to a
specific collection of iterator operations.

Specification
e Correspond to a specific collection of iterator operations
e Classify the kind of iterator each containers provides

¢ Used by standard algorithm to specify which kind of iterator it
expects

e Determine a strategy for accessing container elements

Cours de C++ 14/17

Pclytech'Paris-UPMC

Iterators categories

Categories
© [nput iterator : Sequential access in one direction, input only
@® Output iterator : Sequential access in one direction, output only
@ Forward iterator : Sequential access in one direction, input and
output
@ Bidirectional iterator : Sequential access in both direction, input
and output

® Random-access iterator : Efficient access to any element input
and output

template<class Inputlterator, class T>
InputIterator find (InputlIterator first,
InputIterator last, const T& value)

Cours de C++ 16/17

Pclytech'Paris-UPMC
Resume operations

s valid
category characteristic .
expressions
. IT b(a’
Can be copied and copy-constructed b 7(3)
all categories t+a
Can be incremented a++

/Accepts equality/inequality comparisons

Input
Can be dereferenced as an rvalue
[Forward
Output Can be dereferenced to be the left side of an
Bidirectional P assignment operation

Can be default-constructed

Can be decremented

RandomAccess a +n

n + a
n-a
a-b

Supports arithmetic operators + and -

Supports inequality comparisons (< and >)
lbetween iterators

Supports compound assignment operations + =,
<=and >=

Supports offset dereference operator ([1)

Cours de C++ 17717

	Title
	Intro
	Template functions for containers

