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Research

Thesis abstract

Title : Incremental design process, Verification of hardware components and Abstraction
method for the verification of system on chip.

This thesis deals with formal verification of integrated system on chip by model checking.
We propose an incremental design process for the verification of a hardware component.
This method is a framework for designing a component by successively adding some new
behaviours. The incremental design process guarantees, by construction, the non-regression
of a component during the design process. Moreover, the specification is automatically derived
with taking into account the new behaviours. We apply our method with success for the design
of a protocol converter.

The formal verification process of system on chip suffers from the states explosion problem.
Abstraction techniques aim at alleviating this problem. We state an abstraction algorithm
based on the specification of each component. We construct a Kripke structure directly from
a subset of the specification written with CTL formulas. This abstraction takes place in a
counter-example guided abstraction refinement framework. The first experiments show an
important benefit in terms of verification time and an increase in the size of the system we
are now able to check. This result reinforces the interest of our abstraction method.

Keywords

Hardware design, SoC, protocol converter, formal verification, Model Checking, CTL,
Abstraction, CEGAR

Context

Contemporary system-on-chip (SoC) design demands the use of pre-existing intellectual
property (IP). IP’s may come from different company or academic university. It is now crucial
to insure that each IP is correct before it is used in SoC projects. The use of formal method
may lead to produce a higher-quality reusable design. The issue of the formal verification in
SoC is firstly to check IP individually and secondly to provide the verification of the whole
system. As well known, the formal verification of large designs is limited by the complexity
of the system due to state space explosion problem.

The incremental design process

We first formalized an incremental design process to help designers at designing and speci-
fying one component. In our context hardware components are defined by synchronous Moore
machine and the specification logic used is CTL. This method stems from the observation of
the way some hardware components may be designed. In some cases, hardware designers
adopt an incremental strategy : after having defined the information flow of the design, the
rough structure of the data paths and the control part, they proceed to the implementation
of the simplest cases up to the most complex ones. This is accomplished by adding new



functionalities, thus building a more and more complex device. This is particularly true for
devices implementing a pipe-line flow: stages of the pipe-line can be roughly drawn and then
the stalling actions are added. We believe this incremental approach provides a framework
that simplifies the design process, by treating difficulties one by one instead of having to face
them altogether.

We are interested in exploring the links between properties that are true in an initial
model and those that are true in the extended one. This might be expressed as: “ May we
transform the CTL formulae that are true in the initial model into other CTL properties
that are true in the extended one, capturing the way the extension was performed ?”. Given
an additive increment, the initial model and the extended one, we showed that this CTL
transformation is possible. The transformed CTL formulae, applied to the extended model,
restrict the verification state-space traversal to a sub-graph isomorphic to the one derived
from the initial model. We showed how these transformations can be used to perform non-
regression analysis. In a general way, when a designer modifies a component, he has to insure
that the modification did not induce regression: the correction does not disturb other correct
functionalities.

We applied this method for the design and the verification of the wrapper VCI-PI. We
develop a prototype tool to automatically transform the set of CTL properties.

Abstract component from specification

The major technique to handle the state-explosion problem is the use of abstraction The
major approach used to perform such a verification is the simulation of component models,
described in a hardware description language. Its main advantage is the ability to deal with
large systems, encompassing numerous components; the counterpart is the partial verification
it provides. On the opposite side, model-checking provides a complete verification, but is
only applicable to small systems. In both cases, one is interested to build “lighter” models,
containing less information than the complete ones, but still sufficient information to be able
to state if the property is satisfied or not.

The abstraction of a component is derived from a set of logical properties the component
satisfies. This set of properties is expressed in the temporal logic CTL. We develop an al-
gorithm that build an abstract Kripke structure from CTL\X formulae. The abstraction is
conservative, but not exact, the abstract model contains less information than the concrete
one. Thus, checking an abstract model potentially produces incorrect results. The abstrac-
tion guarantees that if a property is true in the abstract model, it is also true in the concrete
model. On the other hand if the abstract model invalidates a property the concrete one may
still satisfy the property The abstraction may be too coarse to subtly capture the behaviour
of the concrete component.

This abstraction is the first step to the definition of a counter-example guided abstraction
refinement based on the set of specification of each components. Figure shows the following
loop : when a property is not satisfied by an abstract model, an abstract counter-example
is provided by the verification tool (or the simulation engine). This counter-example must
be analyzed in order to determine if it is a spurious counter-example. In this case, the
abstract model can be iteratively constrained, by adding new properties in order to refine the
abstraction.

We applied this method for the verification of a platform composed with initiator and
target VCI, a PI-bus and master and slave wrappers. A first prototype tools transform a
CTL formula into a verilog description of the abstract Kripke structure.
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Figure 1: CEGAR Loop
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