
Data Decision Diagrams for Petri Nets Analysis

Jean-Michel Couvreur1, Emmanuelle Encrenaz2, Emmanuel Paviot-Adet2,
Denis Poitrenaud2, and Pierre-André Wacrenier1

1 LaBRI, Université Bordeaux 1, Talence, France
<name>@labri.fr

2 LIP6, Université Pierre et Marie Curie, Paris, France
<name>@lip6.fr

Abstract. This paper presents a new data structure, the Data Deci-
sion Diagrams, equipped with a mechanism allowing the definition of
application-specific operators. This mechanism is based on combination
of inductive linear functions offering a large expressiveness while alle-
viating for the user the burden of hard coding traversals in a shared
data structure. We demonstrate the pertinence of our system through
the implementation of a verification tool for various classes of Petri nets
including self modifying and queuing nets.
Topics. Petri Nets, Decision Diagram, System verification.

1 Introduction

The design and verification of distributed systems present a scientific and tech-
nical challenge that must be met by a combination of techniques that scale up
to the complexity of systems produced in industrial applications. Simulation is
already a recognized tool within industries dealing with complex systems such
as telecommunications or aeronautics. Even if an acceptable degree of confidence
can be reached via this technique, exhaustiveness cannot generally be reached
due to the number of possible states of these systems.

In the 90’s, the electronic industries, in search of tools to increase their confi-
dence level in their final product, adopted the Binary Decision Diagrams (BDDs)
[1] as a way to deal with the high complexity of their components. BDD can be
viewed as a tree structure: binary variables involved in states are ordered, a set
of nodes is associated to each variable and the variable valuations are associ-
ated to the arcs between nodes. When implemented, the uniqueness of BDDs,
combined with the tree structure, ensures an efficient technique to deal with
numerous states [6, 4]. Then exhaustiveness could be handled, even with billions
and billions of states to verify.

The BDDs expressive power is large enough to deal with a large class of finite
state system. Even dynamic systems can be verified using such a technique [5].
Therefore, other domains, like parallel system verification, tried to use BDDs to
verify complex systems [8]. Since the number of variables of the studied system
is a critical parameter, numerous BDD-like structures were created in order to
adapt the tree structure to particular needs [7, 2].



2 Jean-Michel Couvreur et al.

Like BDDs, the shared-tree structures are usually stuck to a precise inter-
pretation. Therefore, dealing with states of a new kind of model usually leads
to the design of new kinds of structures or to new kinds of operators on existing
structures.

In this paper, a new tree structure, the Data Decisions Diagrams (DDDs),
is introduced. Our goal is to provide a flexible tool that can be easily adapted
to any kind of model and that offers the same storage capabilities as the BDD-
like structures. Unlike previous works on the subject, operators on the structure
are not hard-coded, but a class of operators, called homomorphisms, are intro-
duced to allow transition rules coding. A special kind of homomorphisms, called
inductive homomorphisms, allows to define ”local” homomorphisms, i.e. homo-
morphisms that only use information local to a node in its definition. Together
with composition, concatenation, union... operations, general homomorphisms
are defined.

In our model, a node is associated to a variable and valuations are associated
to arcs. The variables domain is integer, but we do not have to know a priori
bounds.

Another nice feature of the DDDs is that no variable ordering is presupposed
in definition. Moreover, variables are not assumed to be part of all paths. They
also can be seen many times along the same path. Therefore, the maximal length
of a path in the tree is not fixed. This feature is very useful when dealing with
dynamic models like queuing Petri nets, but also when a temporary variable is
needed (cf the mechanism we used to code self modifying nets firing rules). Even
if a global variable ordering is useful to obtain an efficient storage, the fact that
this ordering is not part of the definition introduces a great flexibility when one
needs to encode a state. Since we use techniques that have been shown efficient to
store set of states, since state coding is very flexible and since operator definition
is based on a well-founded theoretical foundation, DDD is a tree structure that
can be easily adapted to any kind of computational model.

This paper is structured the following way: Section 2 describes DDDs, the
homomorphisms, and gives some hints on the implementation we made in our
prototype. Section 3 describes a possible use of DDDs for ordinary Petri nets and
some of the most popular extensions (inhibitors arcs, capacity places, reset arcs,
self modifying nets, queuing nets). Section 4 gives conclusions with perspectives.

2 Data Decision Diagrams

2.1 Definitions of DDDs

Data Decision Diagrams (DDD) are data structures for representing sets of se-
quences of assignments of the form e1 = x1; e2 = x2; · · · en = xn where ei are
variables and xi are values. When an ordering on the variables is fixed and the
variables are boolean, DDD coincides with the well-know Binary Decision Di-
agram. If an ordering on the variables is the only assumption, DDDs are the
specialized version of the Multi-valued Decision Diagrams representing charac-
teristic function of sets [7, 2]. For Data Decision Diagram, we assume no variable



Data Decision Diagrams for Petri Nets Analysis 3

ordering and, even more, the same variable may occur many times in an assign-
ment sequence, allowing the representation of dynamic structures.

Traditionally, decision diagrams are often encoded as decision trees. Figure
1, left-hand side, shows the decision tree for the set of sequences of assignments
A = {(a = 1; a = 1), (a = 1; a = 2; b = 0), (a = 2; b = 3)}. As usual, node 1
stands for accepting terminator and node 0 for non-accepting terminator. Since,
there is no assumption on the cardinality of the variable domains, we consider
node 0 as the default value. Therefore node 0 is not depicted in the figure.

1 2

1 2
3

0

a

a

b

b

1

1

1

1

1

1 2

21

0

a

a

b

T

Fig. 1. Two Data Decision Diagrams

Any set of sequences cannot be represented, we thus introduce a new kind
of leaf > for undefined. Figure 1, right-hand side, gives an approximation of the
set A∪{(a = 2; a = 3)}. Indeed, an ambiguity is introduced since after assigning
the first value of variable a = 2, one may want to assign both a = 3 and b = 3.
Such assignment sequences cannot be represented in the structure: from a node,
only one arc of a given value is allowed.

In the following, E denotes a set of variables, and for any e in E, Dom(e)
represents the domain of e.

Definition 1 (Data Decision Diagram). The set ID of DDDs is defined by
d ∈ ID if:

– d ∈ {0, 1,>} or
– d = (e, α) with:

• e ∈ E
• α : Dom(e) → ID, such that {x ∈ Dom(e) |α(x) 6= 0} is finite.

We denote e a−→ d, the DDD (e, α) with α(a) = d and for all x 6= a, α(x) = 0.

A straight definition of DDDs equality would lead to a non-unique repre-
sentation of the empty set (any structure with node 0 as unique terminator).
Therefore we introduce the following equivalence relation:

Proposition 1 (Equivalence relation). Let ≡ the relation inductively defined
for ∀d, d′ ∈ ID as



4 Jean-Michel Couvreur et al.

– d = d′ or
– d = 0, d′ = (e′, α′) and ∀x ∈ Dom(e′) : α′(x) ≡ 0 or
– d = (e, α), d′ = 0 and ∀x ∈ Dom(e) : α(x) ≡ 0 or
– d = (e, α), d′ = (e′, α′) and (d ≡ 0) ∧ (d′ ≡ 0) or
– d = (e, α), d′ = (e′, α′) and (e = e′) ∧ (∀x ∈ Dom(e) : α(x) ≡ α′(x))

The relation ≡ is an equivalence relation1.

From now on, a DDD is an equivalence class of the relation ≡. We will use 0
to represent any empty DDD. This induces a canonical representation of DDDs:
in a DDD, nodes equivalent to 0 are replaced by the terminator node 0.

An important feature of DDDs is the notion of approximation of assignment
sequence sets based on the terminator node >:> represents any set of assignment
sequences. When > does not appear in a DDD, the DDD represents a unique
set of assignment sequences; we say that it is well-defined.

Definition 2 (Well-defined DDD). A DDD d is well-defined if

– d = 0 or
– d = 1 or
– d = (e, α) where ∀x ∈ Dom(e) : α(x) is well-defined.

In other words, > is the worst approximation of a set of assignment se-
quences. It induces inductively a partial order which formalizes the notion of
approximation: the better-defined relation.

Proposition 2 (Better-defined partial order). Let the better-defined rela-
tion, denoted �, be inductively defined by ∀d, d′ ∈ ID as d � d′ if

– d′ = > or
– d ≡ d′ or
– d ≡ 0, d′ = (e′, α′) and ∀x ∈ Dom(e′) : 0 � α′(x)
– d = (e, α), d′ = (e′, α′) and (e = e′) ∧ (∀x ∈ Dom(e) : α(x) � α′(x))

The relation � is a partial order on equivalent classes of DDDs. Moreover well-
defined DDDs are the minimal DDDs.

In order to generalize operators over assignment sequence sets, we observe
that better-defined the operands are, better-defined the result is. This leads to
the following definition:

Definition 3 (DDD operator). Let f be a mapping IDn → ID. f is an oper-
ator on ID if f is compatible with the partial order �:

∀(di)i ∈ IDn,∀(d′i)i ∈ IDn : (∀i : di � d′i) ⇒ f((di)i) � f((d′i)i)

1 Proofs of propositions are omitted since they are simple but tedious. Indeed, for
each proposition, one simply has to enumerate each kind of DDD appearing in it
and check the properties.



Data Decision Diagrams for Petri Nets Analysis 5

2.2 Operations on DDDs

First, we generalize the usual set-theoretic operations – sum (union), product
(intersection) and difference – to sets of assignment sequences expressed in terms
of DDDs. The crucial point of this generalization is that all DDDs are not well-
defined and moreover that the result of an operation on two well-defined DDDs
is not necessarily well-defined. We propose definitions of these set-theoretic op-
erations which produce the best approximation of the result as possible. In par-
ticular, when the two operands are well-defined and when the result may be
represented by a well-defined DDD, then the following operators produce ex-
actly this one.

Definition 4 (Set operators). The sum +, the product ∗, the difference \ of
two DDDs are defined inductively as follows:

+ 0 ∨ (e2, α2) ≡ 0 1 > (e2, α2) 6≡ 0
0 ∨ (e1, α1) ≡ 0 0 1 > (e2, α2)

1 1 1 > >
> > > > >

(e1, α1) 6≡ 0 (e1, α1) > > (e1, α1 + α2) if e1 = e2
> if e1 6= e2

∗ 0 ∨ (e2, α2) ≡ 0 1 > (e2, α2) 6≡ 0
0 ∨ (e1, α1) ≡ 0 0 0 0 0

1 0 1 > 0
> 0 > > >

(e1, α1) 6≡ 0 0 0 > (e1, α1 ∗ α2) if e1 = e2

0 if e1 6= e2

\ 0 ∨ (e2, α2) ≡ 0 1 > (e2, α2) 6≡ 0
0 ∨ (e1, α1) ≡ 0 0 0 0 0

1 1 0 > 1
> > > > >

(e1, α1) 6≡ 0 (e1, α1) (e1, α1) > (e1, α1 \ α2) if e1 = e2

(e1, α1) if e1 6= e2

where, for any � ∈ {+, ∗, \}, α1 � α2 stands for the mapping in Dom(e1) → ID
with ∀x ∈ Dom(e1) : (α1 � α2)(x) = α1(x) � α2(x).

The concatenation operator defined below corresponds to the concatenation
of language theory. Nevertheless, the definition takes into account the approxi-
mation aspect.



6 Jean-Michel Couvreur et al.

Definition 5 (Concatenation operator). Let d, d′ be two DDDs. The con-
catenation d · d′ is inductively defined as follows:

d · d′ =















0 if d = 0 ∨ d′ ≡ 0
d′ if d = 1
> if d = > ∧ d′ 6≡ 0
(e,

∑

x∈Dom(e)(e
x→ (α(x) · d′))) if d = (e, α)

The operators respect the definition of operator on DDD (Def. 3) and have
the usual properties as commutativity and associativity but ∗ is not associative.

Proposition 3 (Basic operator properties). The operators ∗,+, \, · are op-
erators on DDDs. Moreover, ∗, + are commutative and +, · are associative. Op-
erator ∗ is not associative.

Thanks to the basic properties of operator +, we may denote a DDD (e, α)
as

∑

x∈Dom(e)(e
x→ α(x)). Remark that this sum has a finite number of non null

DDDs.

Example 1. Let dA be the DDD represented in left-hand side of Fig. 1, and dB

the right-hand side one. Notice that any DDD may be defined using the constants
0, 1, >, the elementary concatenation e x−→d and the operators +.

dA = a 1−→
(

a 1−→1 + a 2−→b 0−→1
)

+ a 2−→b 3−→1

dB = a 1−→
(

a 1−→1 + a 2−→b 0−→1
)

+ a 2−→>

Let us now detail some computations:

dA + a 2−→a 3−→1 = a 1−→
(

a 1−→1 + a 2−→b 0−→1
)

+ a 2−→
(

b 3−→1 + a 3−→1
)

= a 1−→
(

a 1−→1 + a 2−→b 0−→1
)

+ a 2−→>
= dB

(

a 1−→1 ∗ a 2−→1
)

∗ > = 0 ∗ > = 0 6= a 1−→1 ∗
(

a 2−→1 ∗ >
)

= a 1−→1 ∗ > = >

dA \ dB = a 2−→
(

b 3−→1 \ >
)

= a 2−→>

dB · c 4−→1 = a 1−→
(

a 1−→c 4−→1 + a 2−→b 0−→c 4−→1
)

+ a 2−→>

The next step of our formalization is to introduce homomorphisms over DDDs
to allow the definition of complex operations. In the aim of using the previous
operators in the homomorphism context, distributivity is a crucial property.
However, it must be adapted to take into account the approximation feature.

Proposition 4 (Weak-distributivity). The product operator ∗ and the con-
catenation operator · are weakly distributive with the sum operator + and the
difference operator \ is weakly right distributive with operator +:

∀d1, d2, d ∈ ID :















d ∗ d1 + d ∗ d2 � d ∗ (d1 + d2)
(d1 \ d) + (d2 \ d) � (d1 + d2) \ d
d · d1 + d · d2 � d · (d1 + d2)
(d1 · d) + (d2 · d) � (d1 + d2) · d



Data Decision Diagrams for Petri Nets Analysis 7

The well-foundation of these propositions is that, in the absence of undefined
values (>), we regain the usual properties of these binary operators.

2.3 Homomorphisms on DDDs

Our goal is to generalize the notion of homomorphism to DDD taking into ac-
count the approximation introduced by >. The classical identity f(d1)+f(d2) =
f(d1 +d2) is rewritten using the better-defined relation. One can notice that the
weak distributivity that we have just introduced above matches for classical
mappings as d ∗ Id, Id \ d, Id · d, d · Id where d is a given DDD and Id is the
identity. Another requirement for homomorphisms is to be DDD operators and
to map 0 to 0.

Definition 6 (Homomorphism). A mapping Φ on DDDs is an homomor-
phism if Φ(0) = 0 and

∀d1, d2 ∈ ID :
{

Φ(d1) + Φ(d2) � Φ(d1 + d2)
d1 � d2 ⇒ Φ(d1) � Φ(d2)

The sum and the composition of two homomorphisms are homomorphisms.

Proposition 5 (Sum and composition). Let Φ1, Φ2 be two homomorphisms.
Then Φ1 + Φ2, Φ1 ◦ Φ2 are homomorphisms.

So far, we have at one’s disposal the homomorphism d ∗ Id which allows to
select the sequences belonging to the given DDD d; on the other hand we may also
remove these given sequences, thanks to the homomorphism Id\d. The two other
interesting homomorphisms Id·d and d·Id permit to concatenate sequences on the
left or on the right side. For instance, a widely used left concatenation consists
in adding a variable assignment e1 = x1 that is denoted e1

x1−→Id. Of course, we
may combine these homomorphisms using the sum and the composition.

However, the expressive power of this homomorphism family is limited; for
instance we cannot express a mapping which modifies the assignment of a given
variable. A first step to allow user-defined homomorphism Φ is to give the value
of Φ(1) and of Φ(e x−→d) for any e x−→d. The key idea is to define Φ(e, α) as
∑

x∈Dom(e) Φ(e x−→α(x)) and Φ(>) = >. A sufficient condition for Φ being an
homomorphism is that the mappings Φ(e, x) defined as Φ(e, x)(d) = Φ(e x−→d)
are themselves homomorphisms. For instance, inc(e, x) = ex+1−→Id and inc(1) = 1
defines the homomorphism which increments the value of the first variable. A
second step is introduce induction in the description of the homomorphism.
For instance, one may generalize the increment operation to the homomor-
phism inc(e1) which increments the value of the given variable e1. A possi-
ble approach is to set inc(e1)(e, x) = ex+1−→Id whenever e = e1 and otherwise
inc(e1)(e, x) = e x−→inc(e1). Indeed, if the first variable is e1, then the homo-
morphism increments the values of the variable, otherwise the homomorphism
is inductively applied to the next variables. The following proposition formalizes
the notion of inductive homomorphisms.



8 Jean-Michel Couvreur et al.

Proposition 6 (Inductive homomorphism). Let I be an index set. Let (di)i∈I
be a family of DDDs. Let (τi)i∈I and (πi,j)i,j∈I be family of homomorphisms.
Assume that ∀i ∈ I, the set {j ∈ I | πi,j 6= 0} is finite. Then the following
recursive definition of mappings (Φi)i∈I :

∀d ∈ ID, Φi(d) =















0 if d = 0
di if d = 1
> if d = >
∑

x∈Dom(e),j∈I πi,j ◦ Φj(α(x)) + τi(α(x)) if d = (e, α)

defines a family of homomorphisms called inductive homomorphisms. The sym-
bolic expression

∑

j∈I πi,j ◦ Φj + τi is denoted Φi(e, x).

To define a family of inductive homomorphisms (Φi)i∈I , one has just to set
the homomorphisms Φi(e, x) and the DDDs Φi(1). The two following examples
illustrate the usefulness of these homomorphisms to design new operators on
DDD. The first example formalizes the increment operation. The second example
is a swap operation between two variables. It gives a good idea of the techniques
used to design homomorphisms for some variants of Petri net analysis.

Example 2. This is the formal description of increment operation:

inc(e1)(e, x) =

{

e x+1−→ Id if e = e1

e x−→ inc(e1) otherwise
inc(e1)(1) = 1

Let us now detail the application of inc over a simple DDD:

inc(b)(a 1−→b 2−→c 3−→d 4−→1) = a 1−→inc(b)(b 2−→c 3−→d 4−→1)
= a 1−→b 3−→Id(c 3−→d 4−→1)
= a 1−→b 3−→c 3−→d 4−→1

Example 3. The homomorphism swap(e1, e2) swap the values of variables e1
and e2. It is designed using three other kinds of homomorphisms: rename(e1),
down(e1, x1), up(e1, x1). The homomorphism rename(e1) renames the first vari-
able into e1; down(e1, x1) sets the variable e1 to x1 and copies the old assignment
of e1 in the first position; up(e1, x1) puts in the second position the assignment
e1 = x1.



Data Decision Diagrams for Petri Nets Analysis 9

swap(e1, e2)(e, x) =







rename(e1) ◦ down(e2, x) if e = e1

rename(e2) ◦ down(e1, x) if e = e2

e x−→ swap(e1, e2) otherwise
swap(e1, e2)(1) = >

rename(e1)(e, x) = e1
x−→ Id

rename(e1)(1) = >

down(e1, x1)(e, x) =
{

e x−→ e x1−→ Id if e = e1

up(e, x) ◦ down(e1, x1) otherwise
down(e1, x1)(1) = >

up(e1, x1)(e, x) = e x−→ e1
x1−→ Id

up(e1, x1)(1) = >

Let us now detail the application of swap over a simple DDD which enlights
the role of the inductive homomorphisms:

swap(b, d)(a 1−→b 2−→c 3−→d 4−→1) = a 1−→swap(b, d)(b 2−→c 3−→d 4−→1)
= a 1−→rename(b) ◦ down(d, 2)(c 3−→d 4−→1)
= a 1−→rename(b) ◦ up(c, 3) ◦ down(d, 2)(d 4−→1)
= a 1−→rename(b) ◦ up(c, 3)(d 4−→d 2−→1)
= a 1−→rename(b)(d 4−→c 3−→d 2−→1)
= a 1−→b 4−→c 3−→d 2−→1

One may remark that swap(b, e)(a 1−→b 2−→c 3−→d 4−→1) = a 1−→>.

2.4 Implementing Data Decision Diagrams

In order to write object oriented programs handling DDDs, a programmer needs
a class hierarchy translating the mathematical concepts of DDDs, of set oper-
ators, of concatenation, of homomorphisms and of inductive homomorphisms.
These concepts are translated in our interface by the definitions of three classes
(DDD, Hom and InductiveHom) where all the means to construct and to handle
DDDs and homomorphisms are given. Indeed an important goal of our work
is to design an easy to use library interface; so, we have used C++ overloaded
operators in order to have the most intuitive interface as possible.

From the theoretic point of view, an inductive homomorphism Φ is an ho-
momorphism defined by a DDD Φ(1) and an homomorphism family Φ(e, x).
Inductive homomorphisms have in common their evaluation method and this
leads to the definition of a class that we named InductiveHom that contains
the inductive homomorphism evaluation method and gives, in term of abstract
methods, the components of an inductive homomorphism: Φ(1) and Φ(e, x). In



10 Jean-Michel Couvreur et al.

order to build an inductive homomorphism, it suffices to define a derived class
of the class InductiveHom implementing the abstract methods Φ(1) and Φ(e, x).

The implementation of our interface is based on the three following units:

– A DDD management unit: thanks to hash table techniques, it implements the
sharing of the memory and guarantees the uniqueness of the tree structure
of the DDDs.

– An HOM management unit: it manages data as well as evaluation methods
associated to homomorphisms. Again the syntactic uniqueness of a homo-
morphism is guaranteed by a hash table. We use the notion of derived class
to represent the wide range of homomorphism types.

– A computing unit: it provides the evaluation of operations on the DDDs,
as well as the computation of the image of a DDD by an homomorphism.
In order to accelerate these computations, this unit uses an operation cache
that avoids to evaluate twice a same expression during a computation. The
use of cached results reduces the complexity of set operations to polynomial
time. Since inductive homomorphisms are user-defined, we cannot express
their complexity.

3 Data Decision Diagrams for ordinary Petri nets and
some of their extension

In this section, we show how DDDs can be used as a toolkit for the verification
of a large class of Petri nets. At first, we introduce Petri nets with marking-
dependent valuation enriched by place capacity. From this definition, usual sub-
classes are defined from ordinary nets to self modifying ones. In the following
of the section, we present the key element of a model checker, i.e. the inductive
homomorphism encoding the symbolic transition relation associated to each sub-
class of net. Finally, we show how DDDs can be used in the context of queuing
nets.

3.1 P/T-Nets with marking-dependent cardinality arcs and
capacity places

A P/T-Net is a tuple 〈P, T,Pre,Post ,Cap〉 where

– P is a finite set of places,
– T is a finite set of transitions (with P ∩ T = ∅),
– Pre and Post : P × T → (INP → IN) are the marking-dependent pre and

post functions labelling the arcs.
– Cap : P → IN ∪ {∞} defines the capacity of each place.

For a transition t, •t (resp. t•) denotes the set of places {p ∈ P | Pre(p, t) 6= 0}
(resp. {p ∈ P | Post(p, t) 6= 0}).

A marking m is an element of INP satisfying ∀p ∈ P, m(p) ≤ Cap(p). A
transition t is enabled in a marking m if for each place p, the two conditions



Data Decision Diagrams for Petri Nets Analysis 11

Pre(p, t)(m) ≤ m(p) and m(p) − Pre(p, t)(m) + Post(p, t)(m) ≤ Cap(p) hold.
The firing of a transition t from a marking m leads to a new marking m′ defined
by ∀p ∈ P,m′(p) = m(p)−Pre(p, t)(m)+Post(p, t)(m). As usual, this firing rule
is extended to sequence of transitions. Moreover, we denote by Reach(N,m0)
the set of markings of the P/T-Net N reachable from the initial marking m0.

From this definition of nets, we define the following sub-classes by restricting
the functions labelling the arcs as well as the capacities associated to the places.
Assume α−, α+ ∈ INP×T .

A net without capacity restriction is a P/T-Net satisfying ∀p ∈ P,Cap(p) =
∞.

A constant net (or capacity net) is a P/T-Net for which all the functions on
the arcs are constant (i.e. ∀p ∈ P, ∀t ∈ T,Pre(p, t) = α−(p, t) and Post(p, t) =
α+(p, t)).

An ordinary net is a constant net without capacity restriction.
An inhibitor net is a net without capacity restriction and for which the func-

tions labelling the arcs satisfy ∀p ∈ P, ∀t ∈ T,Pre(p, t) = α−(p, t) ∨ Pre(p, t) =
2m(p) and Post(p, t) = α+(p, t). If a transition t has an input place p such that
Pre(p, t) = 2m(p) then if m(p) 6= 0 then t is not enabled in m. Such an arc is
called an inhibitor arc.

A reset net is a net without capacity restriction and for which the arc valua-
tion functions satisfy ∀p ∈ P,∀t ∈ T,Pre(p, t) = α−(p, t) ∨ Pre(p, t) = m(p)
and Post(p, t) = α+(p, t). If a transition t has an input place p such that
Pre(p, t) = m(p) and t is enabled in m then if m′ is the marking reached by
firing t, we have m′(p) = 0. Such an arc is called a reset arc.

Assume β−, β+ ∈ {0, 1}P×T×P . A self modifying net is a net without capacity
restriction and for which the arc valuation functions satisfy : ∀p ∈ P,∀t ∈ T,

Pre(p, t) = α−(p, t) +
∑

r∈P

β−(p, t, r)m(r)

Post(p, t) = α+(p, t) +
∑

r∈P

β+(p, t, r)m(r)

This last definition is more restrictive than the one in [9] for which the coef-
ficients β are natural numbers.

3.2 DDD and ordinary Petri nets

First, we show how to encode the states of an ordinary net. We use one variable
for each place of the system. The domain of place variables is the set of natural
numbers. The initial marking for a single place is encoded by:

dp = p
m0(p)−→ 1

For a given total order on the places of the net, the DDD encoding the initial
marking is the concatenation of DDDs dp1 · · · dpn .



12 Jean-Michel Couvreur et al.

The symbolic transition relation is defined arc by arc. There exists alterna-
tive definitions and the one we chose is not the most efficient. Indeed, it induces
that the DDD representing a set of markings must be traversed for each arc ad-
jacent to a same transition. It is clear that the definition of a more complicated
homomorphism, taking into account all the input and output places of a transi-
tion, would be more efficient. However, the arc by arc definition is modular and
well-adapted for the further combination of arcs of different net sub-classes. We
adopt it for sake of presentation clarity. Notice that all homomorphisms defined
in this section are independent of the chosen order.

Two homomorphisms are defined to deal respectively with the pre (h−) and
post (h+) conditions. Both are parameterized by the connected place (p) as well
as the valuation (v) labelling the arc entering or outing p .

h−(p, v)(e, x) =







ex−v−→Id if e = p ∧ x ≥ v
0 if e = p ∧ x < v
e x−→h−(p, v) otherwise

h−(p, v)(1) = >

h+(p, v)(e, x) =
{

ex+v−→Id if e = p
e x−→h+(p, v) otherwise

h+(p, v)(1) = >
The symbolic relation of a given transition t is given by the definition:

hTrans(t) = ©p∈t•h+(p, α+(p, t)) ◦©p∈•th−(p, α−(p, t))

where the positive coefficients α+ and α− are the ones of the Section 3.1.
It is important to note that the state coding together with the homomorphisms
hTrans ensure that the produced DDDs are well-defined. This algorithm has been
evaluated on a set of examples taken from [2].

The table 1 presents the obtained results (on a PowerBook G4, 667Mhz with
512Mo and running MacOs X). For each model is given the value of the param-
eter, the cardinality of the reachable marking set, the size of the corresponding
DDD, the size of the corresponding tree (i.e a DDD without sharing) and the
computation time (in second). We can remark that the size of the DDDs remains
reasonable for all these results (linear for the dining philosophers) as well as the
computation time when the used homomorphisms can be optimized. However, it
is clear that this prototype does not compete with the solution presented in [2].
Indeed, in [2], the computation of the reachable marking set for 50 philosophers
takes less than 1s.

3.3 Nets with inhibitor arcs, capacity places and reset arcs

The necessary homomorphisms to deal with inhibitor and reset arcs or places
with capacities are just adaptations of the previous ones. Indeed, the firing rule
of these particular elements implies only local operations. As an example, the
following homomorphism is a simple adaptation of h− to inhibitor arcs.



Data Decision Diagrams for Petri Nets Analysis 13

N reached DDD size no sharing time

philosophers 5 1364 127 11108 0.12

10 1.86× 106 267 1.52× 107 0.68

50 2.23× 1031 1387 1.82× 1032 24.48

slotted ring 5 53856 350 507762 5.21

10 8.29× 109 1281 8.07× 1010 136.37

fms 5 2.89× 106 225 9.97× 106 0.76

10 2.5× 109 580 8.02× 109 4.05

20 6.03× 1012 1740 1.87× 1013 26.09

kanban 5 2.55× 106 112 8.98× 106 2.6

10 1.01× 109 257 3.29× 109 34.83

Table 1. Experimentation results for ordinary nets

hi(p)(e, x) =







e x−→Id if e = p ∧ x = 0
0 if e = p ∧ x > 0
e x−→hi(p) otherwise

hi(p)(1) = >

Another adaptation is defined to take into account the capacity of the places:

hc(p, v)(e, x) =







e x−→Id if e = p ∧ x ≤ v
0 if e = p ∧ x > v
e x−→hc(p, v) otherwise

hc(p, v)(1) = >

In a similar way, h+ can be adapted to deal with reset arcs.

hr(p)(e, x) =
{

e 0−→Id if e = p
e x−→hr(p) otherwise

hr(p)(1) = >

The composition of these different homomorphisms allows us to define the
symbolic transition relation for nets including inhibitor and reset arcs as well as
capacity places. Let t be a transition, its transition relation is:

hTrans(t) = ©p∈t•∧Cap(p) 6=∞hc(p,Cap(p))

◦©p∈t• h+(p, α+(p, t))

◦©p∈•t∧Pre(p,t)=α−(p,t) h−(p, α−(p, t))



14 Jean-Michel Couvreur et al.

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

t20

t22

t23

t24

t21ackP1

mess0

ackP0

mess1

ack1

messP0

ack0

messP1

A

B

C

D

E

F

G

H

Fig. 2. Inhibitor net (with capacity) of the alternate bit protocol

◦©p∈•t∧Pre(p,t)=2m(p) hi(p)

◦©p∈•t∧Pre(p,t)=m(p) hr(p)

The symbolic transition relation given below has been evaluated on the model
of Fig.2 originally presented (and explained) in [3]. The table 2 gives the obtained
results. The parameter is here the capacities of the places containing the mes-
sages and the acknowledgments. We can remark that the number of DDD nodes
is constant. However, the number of arcs (not given in the table) is not.

N reached DDD size no sharing time

alternate bit 5 14688 84 43804 1.89

10 170368 84 480394 11.21

20 2.23× 106 84 6.29× 106 94.66

Table 2. Experimentation results for inhibitor, reset and capacity net

3.4 Self modifying nets

The design of homomorphisms for self modifying nets is more tricky. Indeed, the
expression labelling an arc between two nodes can refer any places of the net
and then its evaluation is a global operation.



Data Decision Diagrams for Petri Nets Analysis 15

Of course, the adjacent places of the considered transition can be referenced
in the function labelling the arcs. Like in previous subsections, the pre condition
evaluation as well as the computation of the reached marking are done in several
steps (arc by arc). Let m be the marking before the firing of the considered
transition t . In order to properly compute the reached marking, for any place
p adjacent to t and referenced in an expression used to fire t, the marking m(p)
must be stored. Indeed, this value is necessary for the arc by arc computation.
To deal with this specific situation, we duplicate such places in the DDD before
doing any other operation. The first occurrence of a place is used to store the
current value of the marking during the computation whereas the second one
represents the value of the marking before the firing. After all the operations are
performed, the duplicates are removed. Duplication and removal are expressed
in terms of homomorphisms. Due to their weak interest, these homomorphisms
are not presented here.

The evaluation of the pre condition of a transition in a self modifying net is
based on the following homomorphisms.

search(p, i)(e, x) =







e x−→e x−→Id if e = p ∧ i = 1
up(e, x) ◦ search(p, i− 1) if e = p ∧ i > 1
up(e, x) ◦ search(p, i) otherwise

search(p, i)(1) = >

search is a specialization of the homomorphism down presented in the Section
2.3. It searches for the value of the ith occurrence of a given variable. Indeed,
in many cases the value to be subtracted is the one associated to the second
occurrence of the variable (the original value of the place marking).

assign−(p, v)(e, x) =
{

pv−x−→Id if x ≤ v
0 otherwise

assign−(v)(1) = >

assign− is applied on the variable corresponding to the current value of the
marking. Knowing the effective value x of the arc valuation (retrieved by search)
and the current value v of the marking, it evaluates the pre condition and con-
struct the new marking if the latter is satisfied.

setCst−(p, v)(e, x) =







ex−v−→Id if e = p ∧ v ≤ x
0 if e = p ∧ v > x
e x−→setCst−(p, v) otherwise

setCst−(p, v)(1) = >

setCst− is used in the opposite case. The effective value v of the arc valuation
is known a priori. When the current value of the marking of the place p is found
(the first occurrence of the variable), the pre condition is evaluated and the
marking modified in case of success.



16 Jean-Michel Couvreur et al.

set−(p, p′, i)(e, x) =























assign−(p, x) ◦ search(p′, 2) if e = p ∧ p 6= p′

assign−(p, x) ◦ search(p′, 1) if e = p ∧ p = p′

p′ x−→setCst−(p, x) if e = p′ ∧ p 6= p′ ∧ i = 1
p′ x−→set−(p, p′, i− 1) if e = p′ ∧ p 6= p′ ∧ i > 1
e x−→set−(p, p′, i) otherwise

set−(p, p′, i)(1) = >

set− subtracts to the current value of the place p (its first occurrence), the
original value of the place p′ (its second occurrence). This assignment is per-
formed according to the order between p and p′. The case when p precedes p′ is
treated by the first statement of the previous definition by combining a search
followed by an assignment. The special situation of a reset arc is taken into ac-
count by the second statement of the definition. The search is then limited to
the next occurrence of the variable. When p′ precedes p, the effective value of the
arc valuation is then known before visiting p. The value to be subtracted to the
current value of p is the value associated to the second occurrence of p′. Then,
an index i is used to count how many occurrences have been already visited. As
a consequence, we define hsm−

(p, p′) as set−(p, p′, 2).
On the other hand, a set of homomorphisms (assign+, setCst+ and set+) is

defined to deal with the post condition. These homomorphisms are symmetric
to those presented above. The main difference is there is no condition x ≤ v
(resp. v ≤ x) in assign+ (resp. setCst−) and a sum v + x is produced in these
homomorphisms. We define hsm+

(p, p′) as set+(p, p′, 2)
The symbolic relation for nets containing self modifying arcs is given below.

This transition relation can be easily combined with the one of Section 3.3 to
deal with a more general class of net. This combined transition relation has been
implemented in our prototype.

hTrans(t) = ©p∈t•(h+(p, α+(p, t)) ◦©r∈P∧β+(p,t,r)=1h
sm+

(p, r))

◦©p∈•t (h−(p, α−(p, t)) ◦©r∈P∧β−(p,t,r)=1h
sm−

(p, r))

Idle

Files

WriteRead

Read(r)

rr rw

r w

Read(f)

<f> <f>

<f> <f>

<f> <f>

n

F.all

Fig. 3. Self modifying net of readers and preemptive writers

The previous transition relation has been evaluated on the example of Fig. 3
originally presented in [9]. The parameters are the numbers of processes and of



Data Decision Diagrams for Petri Nets Analysis 17

files. The results are presented in Tab. 3. We remark that the size of the DDD is
proportionally linear to the value of the parameters. In the case of finite systems
(i.e. nets with a finite number of reachable markings), it is well-known that
self modifying nets have the same expressive power as ordinary nets. The net of
Fig. 3 can then be imitated by an equivalent ordinary net where the transition w
is duplicated to take into account the different situations (the different possible
number of readers of a given file). Notice that some complementary places must
be introduced to test the strict equality and then that the place bounds must
be known a priori. The last column of Tab. 3 indicates the time needed to treat
the equivalent ordinary net. We remark that the concision of the self modifying
net allows to take advantage on this alternative.

N reached DDD size no sharing time ord. time

preemptive writers 5× 5 873 120 6440 0.62 0.72

10× 10 1.94× 106 485 1.46× 107 18.35 24.35

15× 15 4.95× 109 1100 3.77× 1010 137.5 211.9

Table 3. Experimentation results for self modifying net

3.5 Queuing nets

In this section, we present how DDD can be used to verify ordinary net enriched
by lossy queues. In our model, a loss can occur at any position in the queue. No-
tice that this model cannot be simulated by an ordinary net without introducing
intermediary markings.

A queuing net is a tuple 〈Σ, P,Q, Qloss, T,PreP ,PostP ,PreQ,PostQ〉 where:

– Σ is a finite alphabet,
– 〈P, T,PreP ,PostP 〉 forms an ordinary net,
– Q is a finite set of queues,
– Qloss ⊆ Q is the set of lossy queues,
– PreQ and PostQ : Q× T → Σ ∪ {ε} are the pre and post conditions of the

queues.

For a transition t, we denote by .t (resp. t.), the set of queues {q ∈ Q |
PreQ(q, t) 6= ε} (resp. {q ∈ Q | PostQ(q, t) 6= ε}).

A marking m is an element of INP × (Σ∗)Q. A transition t is enabled in a
marking m if for each place p, the condition PreP (p, t) ≤ m(p) holds and if for
each queue q, there exists a word ω ∈ Σ∗ such that m(q) = PreQ(q, t) · ω. The
firing of t from m leads to a set of new markings constructed from the marking
m′ defined by ∀p ∈ P, m′(p) = m(p) − PreP (p, t) + PostP (p, t) and ∀q ∈ Q, if
m(q) = PreQ(q, t) ·ω then m′(q) = ω ·PostQ(q, t). A marking reached from m by



18 Jean-Michel Couvreur et al.

firing t is any marking obtained by erasing any number of letters of the words
m′(q) for the lossy queue q ∈ Qloss.

The encoding of the states of a queuing net is obtained by generalizing the
one used for P/T-nets. We use one variable for each place and each queue of
the system. The domain of place variables is the set of natural numbers, while
the domain of queue variables is Σ ∪ {#}, the set of messages that may contain
a queue and a terminal character “#” (we assume that # 6∈ Σ). The initial
marking for a single place and a single queue is encoded by:

dr =

{

r x−→ 1 if r ∈ P, m0(r) = x

r a0−→ r a1−→ r · · · an−→ r
#−→ 1 if r ∈ Q,m0(r) = a0 · a1 · · · an

For a given total order r1, r2 · · · rn on P ∪ Q, the DDD encoding the initial
marking is the concatenation of DDDs dr1 · · · drn .

We are now in position to define the homomorphisms used for the arcs related
to the queues.

hq−(q, v)(e, x) =







Id if e = q ∧ x = v
0 if e = q ∧ x 6= v
e x−→hq−(q, v) otherwise

hq−(q, v)(1) = >

hq− tests that the first occurrence of the variable q is associated with the
value v and in this case, it removes this occurrence.

hq+
(q, v)(e, x) =

{

e v−→e ]−→Id if e = q ∧ x = ]
e x−→hq+

(q, v) otherwise
hq+

(q, v)(1) = >

hq+
searches the last occurrence of the variable q (the one associated with

the value ]) and then introduces the value v before the terminal character at the
end of the queue.

hl(q)(e, x) =







hl(q) + e x−→hl(q) if e = q ∧ x 6= ]
e x−→Id if e = q ∧ x = ]
e x−→hl(q) otherwise

hl(q)(1) = >

hl is defined to deal with lossy queues. Its role is to produce all the markings
obtained by erasing any combination of letters in the word associated to the
queue q.

The symbolic relation of a given transition t is given below. Notice that after
the firing of a transition, all the markings reached by loosing some messages are
produced by applying hl. In particular, the homomorphism ©q∈Qlosth

l(q) must
be applied to the initial marking.



Data Decision Diagrams for Petri Nets Analysis 19

hTrans(t) = ©q∈Qlosth
l(q)

◦©q∈t. hq+
(q,PostQ(q, t)) ◦©p∈t•h+(p, α+(p, t))

◦©q∈.t hq−(q,PreQ(q, t)) ◦©p∈•th−(p, α−(p, t))

The previous transition relation has been evaluated on a model of the alter-
nate bit protocol with bounded lossy queues. In our prototype, we have adapted
the homomorphism hc to deal directly with the queue capacities. The experi-
mental results are presented in Tab. 4 and the parameter is the capacity of the
queues. Here again, the size of the DDDs is linearly proportional to the value of
N .

N reached DDD size no sharing time

alternate bit 5 630 104 2008 0.21

10 3355 164 10303 0.53

20 21105 284 63943 1.57

50 280755 644 845263 8.46

100 2.12× 106 1244 6.37× 106 33.4

Table 4. Experimentation results for queuing net

4 Concluding Remarks

DDDs provide a sensible alternative to other decision diagrams and the absence
of hypotheses on the variables and their domains gives an important flexibil-
ity for the coding of the states (allowing the representation of dynamic data
structures or the taking into account of data without a priori knowing their
domains). The inductive homomorphisms permits the definition of a large class
of operators that are specific to a given application domain. While this expres-
siveness comes necessarily at a cost, our experience shows that intelligent use
of advanced techniques such as maximal sharing makes it possible to provide
reasonable performance. Moreover, inductive homomorphisms could be adapted
to other decision diagrams.

The application to the analysis of different classes of Petri nets presented in
this paper has demonstrated the expressiveness of inductive homomorphisms.
Indeed, most of the development cost has been spent for the DDD library while
the Petri net analyser has been coded in less than one day. We have also shown
how this analyser can be completed and extended to provide a CTL model
checker.



20 Jean-Michel Couvreur et al.

However, the performance offered by this prototype are not completely sat-
isfactory even if many ways of optimization are possible. At first, DDDs are
very sensitive to the variable ordering (like other decision diagrams) and no
reordering techniques have been implemented yet. On the other hand, we can
remark that many of the operations are local to a variable. Ciardo et al. in [7, 2]
have proposed a hierarchical structure to reach directly the block of data where
the affected variable is located. DDDs can take advantage of such accelerators.
Finally, the symbolic analysis of homomorphism compositions used for a given
application and their reordering can also be a way to optimize their evaluation.

In the context of a semi-industrial project, the expressiveness of inductive
homomorphisms has been put to the test. We have developed a symbolic model
checker for circuits modelled by VHDL programs. A large subset of the lan-
guage, including discrete timeouts, is covered. These experiments encourage us
to integrate temporal aspects in our Petri net model.

References

1. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, 35(8):677–691, August 1986.

2. G. Ciardo, G. Lüttgen, and R. Siminiceanu. Efficient symbolic state-space construc-
tion for asynchronous systems. In Proc. of ICATPN’2000, volume 1825 of Lecture
Notes in Computer Science, pages 103–122. Springer Verlag, 2000.

3. J.M. Couvreur and E. Paviot-Adet. New structural invariants for Petri nets analysis.
In Proc. of ICATPN’94, volume 815 of Lecture Notes in Computer Science, pages
199–218. Springer Verlag, 1994.

4. H. Hulgaard, P. F. Williams, and H. R. Andersen. Equivalence checking of combina-
tional circuits using boolean expression diagrams. IEEE Transactions of Computer-
Aided Design, 18(7), July 1999.

5. T. Kolks, B. Lin, and H. De Man. Sizing and verification of communication
buffers for communicating processes. In Proc. of IEEE International Conference on
Computer-Aided Design, volume 1825, pages 660–664, Santa Clara, USA, November
1993.

6. S. Minato, N. Ishiura, and S. Yajima. Shared binary decision diagrams with at-
tributed edges for efficient boolean function manipulation. In L.J.M Claesen, editor,
Proceedings of the 27th ACM/IEEE Design Automation Conference, DAC’90, pages
52–57, June 1990.

7. A.S. Miner and G. Ciardo. Efficient reachability set generation and storage us-
ing decision diagrams. In Proc. of ICATPN’99, volume 1639 of Lecture Notes in
Computer Science, pages 6–25. Springer Verlag, 1999.

8. E. Pastor, O. Roig, J. Cortadella, and R.M. Badia. Petri net analysis using boolean
manipulation. In Proc. of ICATPN’94, volume 815 of Lecture Notes in Computer
Science, pages 416–435. Springer Verlag, 1994.

9. R. Valk. Bridging the gap between place- and floyd-invariants with applications
to preemptive scheduling. In Proc. of ICATPN’93, volume 691 of Lecture Notes in
Computer Science, pages 432–452. Springer Verlag, 1993.


