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Basic Concepts I 
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•  Amplification is an essential function in most analog circuits !  

•  Why do we amplify a signal ? 

•  The signal is too small to drive a load 
•  To overcome the noise of a subsequent stage 
•  Amplification plays a critical role in feedback systems 

In this lecture: 
•  Low frequency behavior of single stage CMOS amplifiers: 
•  Common Source, Common Gate, Source Follower, ... 

•  Large and small signal analysis. 
•  We begin with a simple model and gradually add 2nd order effects 

•  Understand basic building blocks for more complex systems. 



Approximation of a nonlinear system 
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Input-Output Characteristic of a nonlinear system 

In a sufficiently narrow range: 

where α0  can be considered 
the operating (bias) point and 
α1 the small signal gain 



Analog Design Octagon 
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Taking Channel Length Modulation into account 
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Calculating Av starting from the Small Signal model:  



CS Stage with Current-Source Load 
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•  Both transistors operate in the saturation region: 



General expression to calculate Av by inspection 
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Gm : the transconductance of 
the circuit when the output is 
shorted to grounded. 
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Lemma: 

Rout : the output resistance 
of the circuit when the 
input voltage is set to zero. 



CS with Source Degeneration 
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Voltage Gain of Degenerated CS 
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Small Signal model including body effect & channel length modulation:  



Gm of Degenerated CS  
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Small Signal model including body effect 
and channel length modulation:  
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Output Resistance of Degenerated CS 
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Source Follower Voltage Gain 
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Common Gate Gain 

H. Aboushady University of Paris VI 

01 =+− inS
D

out VR
R
VV

outinS
D

out
mbm

D

out
O VVR

R
VVgVg

R
Vr =+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

−
11

Small Signal Signal Equivalent Circuit 

The current through RS is equal to -Vout / RD : 

The current through rO is equal to -Vout / RD - gmV1 - gmbV1 : 
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Common Gate Gain 
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Common Gate Amplifier: 

Degenerated Common Source Amplifier: 
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Biasing of a Cascode Stage 
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The cascade of CS stage and a CG stage is called “cascode”. 

M1 : the input device 
M2 : the cascode device 
 
Biasing conditions: 
•  M1 in saturation: 
 

2GSbX VVV −=

12 THinGSb VVVV −≥−

2THXbXout VVVVV −−≥−

12 THGSinb VVVV −+≥

221 THGSTHinout VVVVV −+−≥

•  M2 in saturation: 



Cascode Stage Characteristics 
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Large signal behavior: 
As Vin goes from zero to VDD 
For Vin < VTH M1 and M2 are OFF            

 Vout =VDD 

21222 ])(1[ OOOmbmout rrrggR +++=

Output Resistance: 
•  Same common source stage with 
a degeneration resistor equal to rO1 

1222 )( OOmbmout rrggR +≈

•  M2 boosts the output impedance of M1 
by a factor of gmr02 
 
•  Triple cascode              
     difficult biasing at low supply voltage. 

↑↑outR



Cascode Stage Voltage Gain 
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Ideal Current Source: 

Cascode Current Source: 
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( )4331221 // OOmOOmmv rrgrrggA ≈



Folded Cascode 
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 Simple Folded 
 Cascode 

Folded Cascode 
with biasing 

Folded Cascode 
with NMOS input 



Output Resistance of Folded Cascode 

H. Aboushady University of Paris VI 

231222 )//]()(1[ OOOOmbmout rrrrggR +++=

1111 ])(1[ OSOmbmout rRrggR +++=

Degenerated Common Source Stage: 

Folded Cascode Stage: 

M1             M2  
 
RS                    rO1 // rO3 





Voltage Gain of Degenerated CS 
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The output resistance 
of a degenerated CS stage: OSmbmout rRggR ])(1[ ++=

The Transconductance 
of a degenerated CS stage: 
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Estimating Gain by Inspection 
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The concept of Half Circuit 
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If a fully symmetric differential pair senses differential 
inputs then the concept of half circuit can be applied. 

•  A differential change in the inputs Vin1 and Vin2 is 
absorbed by V1 and V2 leaving VP constant 



Application of The Half Circuit Concept 
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Since VP experiences no change, node P can be considered 
“ac ground” and the circuit can be decomposed into two 
separate halves 
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The Half Circuit Concept : Example 
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Taking into account the output resistance  
(channel length modulation) 
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Cascode Differential Pair 
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)//( OPONmNv rrgA =

Low gain 10 to 20. 

To increase the gain: 
Cascode Differential Pair 

)//( 7551331 OOmOOmmv rrgrrggA =

Current Source Load: 
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Operational Amplifier: Performance Parameters  
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Gain: the open loop gain of an op-amp determines the 
precision of the feedback system employing the op-amp 

Small Signal Bandwith: 
Unity-Gain freq., fu, and the 3dB freq., f3-dB. 

Large Signal Bandwidth (slew rate):  
Op-Amp response to large transient signals. 

Output Swing: 

Linearity: non-linearity can be reduced by using a differential 
circuit and by increasing the open-loop gain in a feedback system 

Noise and Offset: input noise and offset determine the minimum 
signal level that can be processed with reasonable quality.  

Supply Rejection: 



Single stage Op-Amps 
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Simple: Cascode: 

Small Signal Low Frequency Gain 

Output Voltage Swing 



Single stage Op-Amps 

H. Aboushady University of Paris VI 

Example: 
Design this amplifier (find all W/L as well as Vb1, Vb2 and Iref) with 
the following specifications: 
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Folded Cascode Circuits 
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The input device is replaced by 
the opposite type. 

inoutmout VRgV 1=

More room to choose the 
different voltage levels. 

The Idea: 

Same Gain: 

Advantage: 



Folded Cascode Amplifier 
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Folded Cascode Amplifier 
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Folded Cascode Amplifier 
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Effect of Device capacitance on the nondominant pole in telescopic 
and folded cascode  
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Two-Stage OpAmp 
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Output Voltage Swing 
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Miller Effect 
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•  Miller’s Theorem 
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Example 1 
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•  Calculate the input capacitance Cin: 

should be calculated at the frequency of interest. 
X

Y

V
VAv =

To simplify calculations we usually use low frequency value of Av. 

Miller’s theorem cannot be used simultaneously to calculate 
input-output transfer function and the output impedance. 



Association of Poles with Nodes 

H. Aboushady University of Paris VI 

inS

in

in

in
S

in
M CsR

sV
sC

sC
R

sVsV
+

=
+

=
1

)(1
1
)()(

PNinSin

out

CsRCsR
A

CsR
As

V
V

21

21

1
1

11
)(

+++
=

N

out
N CsR

sVsV
1

1

1
)()(

+
=

P

out
P CsR

sVsV
2

2

1
)()(

+
=

Vout1 Vout2 



Association of Poles with Nodes 
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3 poles: 
each determined by the total capacitance seen from each node to 
ground multiplied by the total resistance seen at the node to ground 
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Example 2 

H. Aboushady University of Paris VI 

•  Calculate the pole associated with node X: 

The total equivalent capacitance seen 
from X to ground: )1( ACC FX +=

)1(
11

ACRCR FSXS
X +

==ωThe pole frequency: 



Common Source Stage 
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Neglecting channel length modulation and 
applying the Miller’s theorem on CGD , we have: 

( ) GDvGSX CACC −+= 1
The total capacitance at node X: 

 where, Dmv RgA −=

The total capacitance at the output node: 
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Common Source Stage 
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The transfer function: 

Sources of error (approximation): 
•  we have not considered the existence of zeros in the circuit 
•  the amplifier gain varies with frequency 

 r0 and any load capacitance can be easily included. 
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Common Source : “exact “ Transfer Function 
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To obtain the exact transfer function:  

Applying Kirchoff Current Law (KCL): 
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Common Source : “exact” 1st pole 
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After some manipulations, we get: 
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Common Source : “exact” 2nd pole 

H. Aboushady University of Paris VI 

( )
( ) ( )[ ] 112 +++++++

−
=

sCCRCRCRCRgRsRR
RgsC

V
V

DBGDDGSSGDSGDDmSDS

DmGD

in

out

ξ

having 111

2121

2

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++= ssD

pppp ωωωω

( ) ( )DBGDDGSSGDSGDDmS
p CCRCRCRCRgR +++++
≈

1
1

1ωand 

DBGDDBGSGDGS CCCCCC ++=ξwith 

1
2

11

pDS
p RR ωξ

ω =then 

( ) ( )
( )DBGDDBGSGDGSDS

DBGDDGSSGDDmS
p CCCCCCRR

CCRCRCRgR
++

++++
=

1
2ω



Comparison between “exact” and Miller’s theorem 
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Common Source : transfer function zero 
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After some manipulations, we get: 
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Stability and Frequency Compensation 
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Bode Plot & Root Locus 
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Bode Plot:  
(1) The slope of the magnitude plot changes by  
+ 20 dB/dec at every zero frequency 
 - 20 dB/dec at every pole frequency 
(2) For a pole (zero) frequency of ωm , the phase begins to fall 
(rise) at 0.1ωm , experiences a change - 450 (+ 450) at ωm , and a 
change of -900 (+900) at 10ωm . 
  
Root Locus:  ppp js ωσ +=



One-Pole System 

H. Aboushady University of Paris VI 

)(1
)(

)(
)(

sH
sH

sX
sY

β+
=

0

0

/1
)(

ωs
AsH

+
=

A single pole cannot contribute to a phase shift greater than 90°        
 the system is unconditionally stable. 

We plot                                     
and   at s=jω 
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Bode Plot:   

Root Locus:   
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We plot the location of the poles 
as the loop gain varies 



Two-Pole System 
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Bode Plot:   



Two-Pole System 
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Root Locus:   
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Three-Pole System 
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Additional poles and zeros impact 
the phase much more than the 
magnitude   



Phase Margin 
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GX: Gain Crossover 
PX: Phase Crossover   

To ensure stability   must drop to unity before 
crosses -180°. 

)(sHβ )(sHβ∠

How far should PX be from GX ?   
Small Phase margin   High Phase margin   

Frequency Response: 

Step Response: 

High 
peak 

underdamped overdamped 



Example 
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A two-pole feedback system is designed such that 
and       .     

1)( 2 =pH ωβ
21 pp ωω << What is the phase margin ?   

Since     reaches -135° at 
 

 The phase margin is equal to 45°.    
 

)(sHβ∠ 2pωω =



How much phase margin is adequate ? 

H. Aboushady University of Paris VI 

)135exp(1)( 1 jH −×=ωβFor PM=45° 

)135exp(11
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Frequency Compensation 
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Solution 1 Solution 2 

Modify  )(sHβ∠ Modify  )(sHβ

Poles ↓ ⇒ Stages ↓ ⇒ Gain ↓ Reduces bandwidth 



Frequency Compensation 

Frequency Compensation: 
- lower the frequency of the dominant pole 

 increase the load capacitance  

How much      must be shifted down ? 
Assume: 
1- 
2- required PM=45° 

NpAp ,, ωω << °=∠ 135)( ,ApH ωβ

outp ,ω

-The load capacitance must be 
increased by a factor  outpoutp ,, '/ωω

-The new dominant pole:  outp ,'ω

Op-Amp GBW = 1st non dominant pole 
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Is it possible to compensate using Rout ? 

The answer is NO ! 

Lout
outp CR

1
, =ω

Although, 
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Compensation of 2 stage Op-Amps 
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Total capacitance at node E: 

CvE CAC )1( 2++



2nd Stage 
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( )( )[ ] ( )LGDCLEGDCLmS
p CCCRCCCRgR ++++++
≈

999
1 1

1
ω

( )( )[ ] ( )
( ) ( )[ ]LELGDCEGDCLS

LGDCLGSSEGDCLmS
p CCCCCCCCRR

CCCRCRCCCRgR
++++

+++++++
=

99

999
2

1
ω

 Common Source Amplifier: 



Pole Splitting 
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LL
p CR

1
2 ≈ω

Common Source Amplifier: 

Pole Splitting 

Before compensation: 

( )( )99
1 1

1

GDLmES
p CRgCR ++
≈ω

After compensation: 

( )( )[ ]99
1 1

1

GDCLmES
p CCRgCR +++
≈ω

LE

m
p CC

g
+

≈ 9
2ω


