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Abstract— In this paper, a generalized technique for the design
automation of fs

4
LC bandpass Σ∆ modulators using feedback

FIRDACs is proposed. The FIRDACs are used to increase the
degrees of freedom in order to perform an exact equivalence
with high order discrete-time Σ∆ modulators and also to allow
a more efficient circuit implementation of the LC filter. The
design technique is based on Discrete Time-Continuous Time
equivalence simplified by using the method of partial fractions
expansion. The excess loop delay is taken into account without
making more difficult the calculations since we define how to
get the orders of the FIRDACs. Several examples of design are
simulated with different values of excess loop delay.

I. INTRODUCTION

Recent years have shown an increasing interest to digitize
the input signal near to the front end of the antenna so as to
push more signal processing functions into the digital domain
[1]. LC filter based Σ∆ modulators have been considered
for direct digitization at RF frequencies [2], [3] since they
are more suitable for high frequency applications. The use
of LC filters implies a limited degrees of freedom for the
design of the Noise-Transfer-Function (NTF) [4], [5]. In [6] a
method based on FIRDACs has been presented to solve this
problem. It has been shown that by using FIRDACs, internal
nodes could be removed, thus allowing a more efficient circuit
implementation (Fig.1).

The coefficients of the FIRDACs are computed by using
the Discrete Time-Continuous Time (DT-CT) transformation
technique, which consists in equating, in the Z domain, the
loop-gains of the discrete-time (DT) and continuous-time (CT)
modulators [4], [7], respectively Gd(z) and Gc(z):

Gd(z) ≡ Gc(z) = W (z)
Y (z) (1)

To alleviate the performance degradation due to excess loop
delay [8], we take it into account in the CT loop gain (Fig.
1) and thus in the calculation of the CT coefficients [9].
Nevertheless, this leads to make the DT-CT equivalence more
difficult to achieve as the order of the FIRDACs may vary with
the value of the excess loop delay. Therefore, the automation of
the CT coefficients calculation becomes painstaking since we
have to determine for each given architecture and each value
of the excess loop delay the suitable changes that should occur
to achieve the DT-CT equivalence.

In this paper, we propose a systematic technique based on
partial fractions expansion to calculate the FIRDACs coeffi-
cients in order to make the NTF of an fs

4 LC Σ∆ modulator
identical to a DT Bandpass (BP) Σ∆. In section II, general
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Fig. 1. Model of an LC Σ∆ modulator without intermediate nodes

expressions for the loop gains of the CT Σ∆ modulators
considered are presented. Starting from these expressions, a
systematic technique to compute the orders and the coefficients
of the FIRDACs is proposed in section III. Finally, this
technique has been applied to different LC Σ∆ modulator
orders with different values of excess loop delay, section IV.

II. LC Σ∆ MODULATOR USING 2 FIRDACS

The considered architecture of LC Σ∆ modulator depicted
Fig.1 using only 2 FIRDACs, the loop gain can be expressed
by considering separately both FIRDACs :
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where HU (z) and HC(z) are respectively called useful trans-
fer function and compensation transfer function, n is the order
of the LC filter and ωo determines the center frequency of the
LC filter (ωo = 2π

4T
).

The FIRDACs are composed of digital-to-analog converters
(DAC) with gains (ui and ci) which are separated by half-cycle
delays. The choice of using half-cycle delays instead of full-
cycle delays for FIR filters is to have more degrees of freedom.
In the following we shall consider separately the transfer
function of the DAC, Hdac(s), which has been factorized in
the FIRDAC expression, and the transfer functions of the FIRs,
HFIR(s), with the coefficients and delays. The expressions of



HFIR(s) are the following :
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(3)

where Mu and Mc are respectively the order of the useful
FIRDAC and the order of the compensation FIRDAC, and ui

and ci their respective coefficients.
The DAC considered gives a sine-shaped feedback signal
(Fig.2) which is less sensitive to the clock-jitter [10] and
thus is more adapted to an analog-to-digital conversion at RF
frequencies. Its transfer function is written as:

Hdac(s) =
ω2

dac(1 − e−sT )

s(s2 + ω2
dac)

(4)

where ωdac determines the frequency of the DAC output
signal.
By simplifying and considering the properties of the modified
Z-transform used due to the delays less than a sampling period,
the useful transfer function from equation (2) can be written
as:
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where,
• ni = b i

2 + td

T
c where bxc denotes the greatest integer

inferior or equal to x.
• mi = 1 − ( i

2 + td

T
) + b i

2 + td

T
c

Since i is an integer, according to the above expression we
can say that mi has only 2 different values. We deduce that
the number of modified Z-transforms to compute is always 2.

In the same manner, for the compensation transfer function
from equation (2), we define the following expression:

HC(z) =
z−1

z
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i=0
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(6)

where,
• `i = b i

2 + td

T
c

• mi are the same as the useful transfer function.
In the following we will compute the modified Z-transform
of the expressions (5) and (6) and find the values of the
coefficients ui and ci to achieve the equivalence with the DT
loop gain.

III. DESIGN METHOD:PARTIAL FRACTIONS
IDENTIFICATION

The partial fractions expansion of a proper fraction1 is
unique. Therefore, we can compute the coefficients of the FIR-
DACs by identifying the partial fractions derived from a CT

1a proper fraction is a fraction which has the order of its denominator
higher than the order of its numerator.
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Fig. 2. Sine-shaped feedback signal (hdac(t) = 1 − cos(wdact)) with its
period equal to the sampling period T.

loop gain Z-transform with those derived from a DT loop gain.
This approach is intended to provide insight into the influence
of each parameter (modulator order n and excess loop delay
td) on the calculus to achieve the DT-CT equivalence and lead
to a systematic method to compute the CT coefficients, Fig.(3).
In a first step we determine the expression of the DT loop gain
in partial fractions.
Since we use passive resonators for the CT Σ∆ modulator, we
consider all the resonators having the same center frequency
ωo. Hence, we place all the poles of the DT loop gain, which
are the zeros of the NTF, at the same frequency without any
optimization by spreading [11]. The DT loop gain have the
following form [11]:

Gd(z) =
δn

2 −1 z
n

2 −1 + δn

2 −2 z
n

2 −2 + · · · + δ1 z1 + δ0

(z2 + 1)
n

2
(7)

where δi are integer numbers. By expanding equation (7) in
partial fractions we deduce the following expression :

Gd(z) =

n

2∑

k=1

(
εk

(z − )k
+

ε∗k
(z + )k

)

(8)

εk are complex functions depending on δi and ε∗k are their
conjuguates as the ∗ indicates.
We have now to find in the partial fractions expressions
of Hu(z) and Hc(z) the terms to do the equivalence with
equation (8).

A. Useful Transfer Function

As shown in [7], a technique adapted to a systematic method
to compute modified Z-transform is based on the residues:

Zmi
{A(s)}=

X

pi poles of A(s)

Residues of A(s)emiTs

z − eTs
(9)

By expanding in partial fractions the result of the modified
Z-transform we find an expression where we can distinguish
the terms due to the poles of the DAC and those due to the
poles of the LC filter:
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where all the β are complex numbers and depend on mi.
Considering that ωdac = 2π

T
and ωo = 2π

4T
= π

2T
, the equation



(10) becomes:
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From the above equation we can already notice that the
terms which will be used to do the DT-CT equivalence are
issued from the poles of the LC filter. This explains the link
between the DT loop gain poles and the LC resonators center
frequencies ωo which has been discussed before.
Equation (11) in equation (5) leads to a form of Hu(z) where
we loose the useful terms to achieve the DT-CT equivalence:
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Hence, we need to expand in partial fractions the equation
(12):
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where,

D = nMu−1 + 1 = b
Mu − 1

2
+

td

T
c + 1

and all the γ are complex numbers depending on mi and
coefficients ui of the useful FIRDAC.
In equation (13) we have distinguished terms to identify with
the DT loop gain from terms to cancel with Hc(z). The
identification with the DT loop gain defines a system of
equations based on the numerators of the partial fractions. This
leads to determine the values of useful FIRDAC coefficients
ui.

B. Compensation Transfer Function

Starting from equation (6) we use residues technique to
compute the modified Z-transform of B(s):

Zmi
{B(s)} =

1

z − 1
−

emiTωdac + e−miTωdac

2(z − 1)

=
1 − cos(miTωdac)

z − 1
(14)

Thus, with ωdac = 2π
T

the expression of HC(z) is:

HC(z) =

i=Mc−1∑

i=0

ci(1 − cos(mi2π))

z`i+1
(15)

By identifying the equation (15) with the undesired terms of
HU (z), equation (13), we determine a new system of equations
based on the numerators of the partial fractions. This system
of equations allows to find the values of the coefficients which
have not been determined by the DT-CT equivalence.
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Fig. 3. Systematic approach to compute the CT coefficients for an LC Σ∆
modulator without intermediate nodes and using sine-shape feedbacks

C. Orders of the FIRDACs

The system derived from equation (13) defines the number
of coefficients ui needed to do the equivalence with the DT
loop gain : n. When the excess loop delay is greater than 1
sampling period, the equation (15) shows that the compensa-
tion transfer function does not cancel all the undesired terms
of the equation (13). Therefore, we have to use coefficients
ui of useful FIRDAC to cancel these terms and by doing this
we have to increase the order of this FIRDAC. This leads to
define the order of the useful FIRDAC as following:

Mu = n + b
td

T
c

Hence, we deduce the number of partial fractions that the
compensation transfer function has to cancel:

n + D − Mu = D − b
td

T
c

By considering equation (15) we notice that some of the ci

coefficients can be nullify if mi are integers. This depends on
the value of td and in the worst case half of the coefficients
ci are nullified. Therefore, we double the number of ci

coefficients:
Mc = 2 ∗ (D − b

td

T
c)

In a favorable case, when the values of mi are not integers
the identification between the equation (15) and the undesired
terms of HU (z) nullify the coefficients ci in excess.
In another way, by increasing the order of the useful FIRDAC
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Fig. 4. Comparison of 2nd order LC BP Σ∆ modulators with different
excess loop delays (td) and a 2nd order DT BP Σ∆ modulator (OSR=58,
FFT points=16384)

we can also offer additionnal degrees of freedom in order to
relax some specifications [12].

IV. DESIGN EXAMPLES

We have used the presented method to design second
order and fourth order LC Σ∆ modulators with sine-shaped
feedback. Different excess loop delays have been taken into
account. The DT loop gains are derived from the transforma-
tion lowpass-to-bandpass, thus for a second order we have the
following DT loop-gain :

Gd(z) =
1

z2 + 1
(16)

and for a fourth order :

Gd(z) =
2z2 + 1

(z2 + 1)2
(17)

The FIRDACs coefficients computed with the proposed
method have been used to simulate under Matlab different
modulators. The excess loop delay has been implemented in
the modulator with a fixed delay placed before the FIRDACs,
as shown in Fig.1. Hence, in Fig.4 we can compare the
performance of a second order DT BP modulator and second
order LC modulators with and without excess loop delay. The
behavior is quite the same for the different modulators. This is
confirmed by 4th order modulators. We can see on Fig.5 that
different 4th order LC BP Σ∆ modulators achieve the same
performance than a 4th DT BP Σ∆ modulator.

V. CONCLUSION

In this paper, we presented a generalized technique for the
determination of the CT coefficients for fs

4 LC Σ∆ modulators
using 2 feedback FIRDACs. This method is general and has
been presented with architectures using sine-shaped feedback
signals but it can be extended to rectangular feedback signals.
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Fig. 5. Comparison of 4th order LC BP Σ∆ modulators (Fig.1) with different
excess loop delays (td) and a 4th order DT BP Σ∆ modulator (OSR=58,
FFT points=16384)

The excess loop delay is taken into account without making
more difficult the calculations since we have defined how to
calculate the orders of the FIRDACs. Several examples of
design have been simulated with different values of excess
loop delay.
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