
A Generalized Approach to Design CT ƩΔMs based on 

FIR DAC 
Ahmed Ashry and Hassan Aboushady 

LIP6-SoC Laboratory, University Pierre & Marie Curie, Paris VI, France 

ahmed.ashry@lip6.fr 

  
Abstract— In this paper, a generic and simple approach to 

design Continuous-Time Sigma-Delta Modulators (CT ƩΔMs) 

based on Finite Impulse Response Digital-to-Analog Converter 

(FIR DAC) is introduced. The numerical conversion from 

Continuous-Time to Discrete-Time allows the designer to 

explore complex modulator architectures and different feedback 

DAC shapes, without dealing with difficult equations needed in 
other published design approaches. 

I. INTRODUCTION  

Continuous-Time (CT) Sigma-Delta Modulators (ƩΔMs) 
are receiving more and more attention due to their advantages 

compared to Discrete-Time (DT) ƩΔMs. Inherent anti-

aliasing filtering, lower thermal noise, higher sampling rate 

and lower power consumption are all attractive advantages of 

CT ƩΔMs that make them interesting solutions for high data-

rate wireless communication systems [1].  
On the other hand, the mixed-signal nature of CT ƩΔMs 

makes their design and analysis more complicated than its DT 
counterpart. An efficient way to design a CT ƩΔM is to start 
by calculating its DT equivalent model, as shown in Fig. 1, by 
converting the loop gain from s-domain to z-domain using the 
impulse invariant transformation [2]: 
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where H(s) is the transfer function of the loop filter, HDAC(s) is 
the feedback Digital-to-Analog Converter (DAC) transfer 
function and Ts is the sampling time. This z-domain loop gain 
can be calculated numerically using Matlab® CT-to-DT 
conversion function “c2d”, and it has the general form: 
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Usually this loop gain, which will be referred as CT LG, is 
not optimal and needs to be modified to match the optimal 
loop gain of the DT ƩΔM of the same type and order, which is 
calculated using Schreier toolbox [3]. This optimal discrete 
time loop gain will be referred as DT LG, and it has the 
general form: 
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There are several techniques to match CT LG to DT LG. 
The direct method is to design the CT filter coefficient to 
match the DT equivalent as in [4]. This method is simple, but 
it is not suitable for LC based modulators, where there are no 
sufficient degrees of freedom to change the filter coefficients. 
Another technique is to use multi-feedback by adding a 
delayed version of the feedback DAC [5] or an integrating 
feedback DAC [6]. The multi-feedback technique was 
generalized by [7] to a more flexible technique based on 
matching the loop gain using FIR (Finite Impulse Response) 
DAC. The FIR is added between the modulator output and the 
feedback DAC, as shown Fig. 2, and the FIR coefficients are 
chosen such that the CT LG multiplied by the FIR is equal to 
the desired DT LG: 

     zFzGzG CTDT                (4) 

The authors of [7] suggested a systematic design approach 
that is based on equating the partial fractions of both sides to 
calculate the FIR coefficients. Although this method is 
accurate, it is very difficult to generalize, due to the 
complicated formulas used. The method is getting more 
complicated when applied to higher orders filters or different 
shapes of the feedback DAC waveforms. In this work, a 
numerical approach is proposed to overcome the complexity 
of the analytical equations needed in the design method 
suggested in [7]. 
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Figure 1.  Equivalence between CT and DT ƩΔMs. 
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II. PROPOSED APPROACH 

A. Approach Concept 

As the denominator of CT LG is, by design, equal to DT 
LG, we need only to match the numerators of both sides, so 
(4) can be reduced to: 

     zFzBzB CTDT           (5) 

By expanding both sides, we get: 
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By doing the multiplication, which is actually a convolution, 
we get the following equations set, which can be written in 
matrix format as: 
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or symbolically as: 

     fbb CTDT 
  (8) 

And finally, the FIR coefficients are calculated directly using 
matrix division: 

     DTCT bbf 
1

  (9) 

B. Half Period Delay DAC 

 It can be seen that the suggested method is much simpler 
and more direct. However, the derived equations are valid 
only for FIR that is clocked at the sampling frequency, i.e. the 
delay between any two successive samples is Ts. For more 
flexibility and lower power consumption, the FIR can work at 
both the positive and the negative clock edges, i.e. the delay 
between any two successive samples is Ts/2 [7].  To generalize 
the derived equations for this case without adding more 
complexity, we can divide the FIR into two parts: even part 
and odd part, as shown in Fig. 3. For this case, the CT LG is 
composed of two parts, even part and odd part, where the even 
part is calculated as: 
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and the odd part is calculated as:  
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Numerically, we can find both parts of CT LG: 
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and 

 
 

  n

CTnCTCT

k

kCTCTCT

CT

CT

CT
zazaa

zbzbb

zA

zB
zG odododod

od 








....

....
1

10

1

10    (13) 

As in the previous case, we need to match CT LG to DT LG: 

         zFzGzFzGzG odCTevCTDT odev
      (14) 

Again, the denominator is the same, and we need only to 
match the numerators: 

         zFzBzFzBzB odCTevCTDT odev
          (15) 

By expansion we get: 
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By multiplication and writing in matrix format: 
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Finally, the FIR coefficients can be found directly by matrix 
division. 
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Figure 3.  Half period delay FIR DAC. 
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Figure 2.  FIR-based CT ƩΔM. 
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C. Compensation DAC 

In some cases, and due to excess loop delay, the feedback 
FIR DAC is not sufficient to match CT LG to DT LG. It was 
proposed in [8] to solve this problem by adding a delay 
compensation branch as shown in Fig. 4. The loop gain of the 
compensation branch can be calculated using the same CT-to-
DT conversion technique, but due to the fact that the feedback 
DAC of the compensation branch is connected directly before 
the sampler, the CT-to-DT conversion is much simpler: 

       011 dzsHLzG
s

c nTt
DACCT





            (18) 

where d(0) is the feedback DAC output at the instance of 
sampling. Without loss of generality, the value of d(0) can be 
set to unity. Now the overall CT LG should be matched to the 
DT LG:  

           zFzzFzGzFzGzG codCTevCTDT odev
 1    (19) 

By multiplying both sides with CT LG denominator ACT(z) we 
get: 

             zFzAzzFzBzFzBzB cCTodCTevCTDT odev
 1    (20) 

Similar to the previous two cases, the expansion gives: 
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By multiplication and writing in matrix format: 
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Finally, the FIR coefficients are found by matrix division, as 
the previous cases. 

III. DESIGN EXAMPLE 

To validate the proposed technique, it is used to design a 
4th order LC-based bandpass CT ƩΔM. The first step is to 
design the equivalent DT modulator using Schreier toolbox. 
By using the synthesis function to design a bandpass NTF 
centered at quarter the sampling frequency with 1.5 out-of-
band gain we get the following DT LG transfer function: 
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The next step is to design the CT LC filter shown in Fig. 5, 
such that CT filter poles are coinciding with DT poles:  
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where Gmc is the coupling transconductance between the two 
tank circuits, ωo is the resonance frequency, and L is the 
inductance.  In this example, the center frequency is 915MHz, 
the inductance is 10nH and the coupling transconductance is 
1mA/V. The transfer function of the rectangular NRZ 
feedback DAC is given by: 
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Substituting from (24) and (25) into (10) and (11), the DT 
equivalent is calculated using Matlab® function “c2d” with 
“impulse sampling” option. The two parts of the CT LG are 
found to be:   
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Substituting from (23), (26) and (27) in (22), we get the 
following set of equations:  
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By removing the first trivial zeros row of the equations set, 
and doing matrix division, we get the FIR coefficients: 
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Figure 4.   Adding delay compensation branch 
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The CT ƩΔM and its DT equivalent were simulated using 
Simulink®. The output spectrums of both modulators are 
plotted in Fig. 6, and the SNR (Signal-to-Noise Ratio) of both 
modulators are plotted versus the input amplitude in Fig. 7. It 
can be seen that there is a good agreement between the CT 
ƩΔM and its DT equivalent.  

IV. CONCLUSION 

A generic and simple approach for designing CT ƩΔM 
based on FIR DAC was introduced. The technique was further 
generalized to include FIR with half period delay and to 
modulators with delay compensation feedback branch. The 
numerical nature of the proposed technique, significantly 
simplifies the design, and increases the designer options. The 
technique was applied to a design example of a bandpass 4

th
 

order CT ƩΔM based on LC filter, and the simulations showed 
a good agreement between the designed CT ƩΔM and its DT 
equivalent. 
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Figure 5.  Loop filter of the modulator. 
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Figure 6.  Output Spectrum of the modulator output. 
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Figure 7.  SNR of the modulator versus the input amplitude. 
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