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Abstract This chapter is devoted to the study of Timed Weighted Event
Graphs, which constitute a subclass of Petri Nets often considered for mod-
elling embedded applications such as video encoders. Some basic recent math-
ematical properties are presented leading to algorithms checking the liveness
and computing the optimum throughput of these systems.

1.1 Introduction

The design of embedded multi-media applications are nowadays a central
industrial problem. These systems may often be modelled using Synchronous
Dataflow Graphs (in short SDF) introduced by Lee and Messerschmitt [20, 21].
The vertices of these graphs correspond to programs. Each arc models a buffer
used by the adjacent programs to communicate. It is briefly recalled in section
1.2.1 and is totally equivalent to a Weighted Event Graphs (in short WEG),
which is a subclass of Petri Nets [29]. In this paper, we prefer WEG instead
of SDF because of its importance in the computer scientists community.

There is an important literature on Timed (non Weighted) Event Graphs.
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2 Cyclic Scheduling Problems for the Synthesis of DSP

Indeed, as recalled in Section 1.3.2, they can be viewed as a subclass of uni-
form constraints as defined in Chapter [?]. As recalled in this chapter, for
this class of graphs, the liveness (i.e. the existence of a schedule) and the
computation of the optimum throughput are polynomial problems. The con-
sequence is that most of the optimization problems on these structures are
in NP. For example, many authors developed efficient algorithms to solve
the minimization of the number of tokens of an Event Graph for a given
throughput [10, 14, 18] or some interesting variants [13].

For general Timed Weighted Event Graphs, there is no, to our knowledge,
polynomial algorithm for the liveness or the computation of the maximum
throughput despite original attempts to solve these problems [6]. Note that,
for a slightly differents formalism called Computation Graph [16], Karp and
Miller has shown that the deadlock existence problem is in NP.

From a practical point of view, the optimization problems are solved us-
ing pseudo-polynomial algorithms to evaluate the liveness and the maximal
throughput, which limits dramatically the size of tractable instances. In
[30, 32], the liveness problem of a WEG is solved by using pseudo-polynomial
algorithms mainly based upon a transformation of the WEG into an Event
Graph called expansion introduced in [25, 26].

In [11], the authors consider model checking methods to evaluate the live-
ness of a Marked WEG. In the same way, they concluded in [12] that the
computation of a state graph is not possible for large instances and that effi-
cent methods are required to compute the optimal throughput.

In [5, 8, 28], the authors considered the computation of a periodic schedule
for a Timed WEG with multi-objective functions such as the minimal schedule
length and the minimal amount of memory. Several authors also consider the
minimization of places capacities of a WEG for a given initial marking. This
problem is NP-complete even for Event Graphs as proved in [27] and several
heuristics were developed to solve it [1, 2].

Surprisingly, some polynomial algorithms exists for optimization problems
on Timed WEG with additional assumptions on the structure of the graph or
the values of the throughput: a polynomial algorithm is developped in [22] to
compute an initial live marking of a WEG that minimizes the places capacities.
An approximation algorithm was also developed in [24] which maximizes the
throughput for a place capacities at most twice from the minimum.

The aim of this paper is to present some basic mathematical properties
on Timed WEG leading to polynomial algorithms to evaluate a sufficient
condition of liveness and lower bounds of the optimum throughput. SDF
and WEG are briefly presented in Section 1.2. Section 1.3 is devoted to
the characterization of the precedence relations associated with a WEG and
some basic technical important lemmas. Section 1.4 is dedicated to unitary
graphs, which constitute an important subclass of WEG for the computation
of the optimal throughput. Two important transformations of unitary WEG,
namely the normalization and the expansions are detailed, with some other
important properties. We present in Section 1.5 a polynomial algorithm to
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compute an optimal periodic schedule for a unitary WEG and leading to a
sufficient condition of liveness and a lower bound to the optimum throughput.
Section 1.6 is our conclusion.

1.2 Problem Formulation and basic notations

This section is devoted to the presentation of the problem. Synchronous
Dataflow Graphs and Timed Weighted Event Graphs are briefly introduced.
The two problems tackled here, namely the liveness and the determination of
the maximal throughput of a Timed Marked Weighted Event Graph are then
recalled.

1.2.1 Synchronous Dataflow Graphs

Synchronous Dataflow Graphs (SDF in short) are a formalism introduced
and studied by Lee and Messerschmitt [20, 21] to model embedded applica-
tions defined by a set of programs Pg1, . . . , Pgn exchanging data using FIFO
(First-In First-Out) queues. Each FIFO queue has exactly one input program
Pgi and one output program Pgj and is modelled by an arc e = (Pgi, Pgj)
bi-valued by strictly positive integers vali and valj such that:

1. at the completion of one execution of Pgi, vali(e) data are stored in the
queue to be sent to Pgj , and

2. at the beginning of one execution of Pgj , valj(e) data are removed from
the queue. If there are not enough data, Pgj stops and waits for them.

This formalism suits particularly well for streaming applications such as video
encoders and decoders which are nowadays crucial for economical reasons.
Many real life examples of modelling such systems using SDF may be found in
[4, 15]. Several complex environments for modelling and simulating these sys-
tems were also developed recently (see eamples [19, 33]). Figure 1.1 presents
the modelling of a H263 decoder using a SDF presented in [31].

Pg1 Pg2 Pg3 Pg4
2376 1 1 1 1 2376

FIGURE 1.1: Modelling the H263 decoder using a SDF [31].
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1.2.2 Timed Weighted Event Graphs

A Weighted Event Graph G = (T, P ) (in short WEG) is given by a set
of transitions T = {t1, . . . , tn} and a set of places P = {p1, . . . , pm}. Every
place p ∈ P is defined between two transitions ti and tj and is denoted by
p = (ti, tj). Arcs (ti, p) and (p, tj) are valued by strictly positive integers
denoted respectively by u(p) and v(p). At each firing of the transition ti
(resp. tj), u(p) (resp. v(p)) tokens are added to (resp. removed from) place
p.

For every transition t ∈ T , P+(t) (resp. P−(t)) denotes the set of places
successors (resp. predecessors) of t in G. More formally,

P+(t) = {p ∈ P,∃t′ ∈ T/p = (t, t′) ∈ P} and

P−(t) = {p ∈ P,∃t′ ∈ T/p = (t′, t) ∈ P}.
For any integer ν > 0 and any transition ti ∈ T , < ti, ν > denotes the νth
firing of ti.

An initial marking of the place p ∈ P is usually denoted as M0(p) and
corresponds to the initial number of tokens of p. A Marked Weighted Event
Graph G = (T, P,M0) is a WEG with an initial marking. Figure 1.2 presents
a marked place p = (ti, tj).

ti

M0(p)

tj
u(p) v(p)

FIGURE 1.2: A marked place p = (ti, tj).

A Timed Weighted Event Graph G = (T, P,M0, `) is a Marked WEG such
that each transition t has a processing time `(t) ∈ N−{0}. Preemption is not
allowed. The firing of a transition t at time µ requires then three steps:

1. if every place p ∈ P−(t) has at least v(p) tokens, then exactly v(p)
tokens are removed from p at time µ,

2. t is fired and is completed at time µ+ `(t),

3. lastly, u(p) tokens are placed in every place p ∈ P+(t) at time µ+ `(t).

A schedule σ is a function Sσ : T ×N−{0} → Q+ which associates, with any
tuple (ti, k) ∈ T × N − {0}, the starting time of the kth firing of ti denoted
by Sσ<ti,k>.

There is a strong relationship between a schedule σ and its corresponding
instantaneous marking. Let p = (ti, tj) be a place of P . For any value



Cyclic Scheduling Problems for the Synthesis of Digital Signal Processing 5

µ ∈ Q+ − {0}, let us denote by E(µ, ti) the number of firings of ti completed
at time µ. More formally,

E(µ, ti) = max{q ∈ N, Sσ<ti,q> + `(ti) ≤ µ}.

On the same way, B(µ, tj) denotes the number of firings of tj started up to
time µ and

B(µ, tj) = max{q ∈ N, Sσ<tj ,q> ≤ µ}.

Clearly,
M(µ, p) = M(0, p) + u(p) · E(µ, ti)− v(p) ·B(µ, tj).

The initial marking of a place p ∈ P is usually denoted as M0(p) (i.e. M0(p) =
M(0, p)).

A schedule (and its corresponding marking) is feasible if M(µ, p) ≥ 0 for
every tuple (µ, p) ∈ Q+ − {0} × P . The throughput of a transition ti for a
schedule σ is defined by

τσi = lim
q→+∞

q

Sσ<ti,q>
.

The throughput of σ is the smallest throughput of a transition: τσ = minti∈T τ
σ
i .

Throughout this paper, it is also assumed that transitions are non-reentrant,
i.e. two successive firings of a same transition cannot overlap. This corre-
sponds to

∀t ∈ T, ∀q > 0, Sσ<t,q> + `(t) ≤ Sσ<t,q+1>

Non-reentrance of a transition t ∈ T can be modelled by a place p = (t, t)
with u(p) = v(p) = 1 and M0(p) = 1. In order to simplify the figures, they
are not pictured. However, most of the results presented here may be easily
extended if some transitions are reentrant.

SDF and Timed WEG are equivalent formalisms: transitions may be as-
sociated to programs and places to FIFO queues. However, Timed Marked
WEG simply models the data exchanged using tokens and is a sub-class of
Petri Nets. We selected this last formalism in the rest of the paper.

1.2.3 Problem Formulation

Let us consider a given Timed Marked WEG G = (T, P,M0, `). The two
basic problems considered here are formally defined as follows:

Liveness: May every transition be fired infinitely often ?

G must be live since an embedded code has to be performed without
interruption.

Maximal throughput: what is the maximal throughput of a feasible sched-
ule ?



6 Cyclic Scheduling Problems for the Synthesis of DSP

Remark that the earliest schedule (which consists in firing the transitions
as soon as possible) always exists for live Marked Timed WEG and has
a maximum throughput.

As recalled in Section 1.1, these two problems correspond to the checking
stages [9] of most optimization problems on Timed Marked WEG. They must
be efficiently solved to compute good solutions to most optimization problems
on Timed WEG.

1.3 Precedence relations induced by a Timed Marked
WEG

This section is dedicated to several basic technical properties on Timed
Marked WEG. The precedence relations between the successive firings of two
transitions adjacent to a place p are firstly characterized. Then, it is observed
that for Event Graphs (i.e. u(p) = v(p) = 1 for every p ∈ P ), these relations
are uniform precedence constraints as defined in Chapter ??. Some additional
technical lemmas on precedence relations are lastly considered.

1.3.1 Characterization of the precedence relations

As defined in Section 1.2.2, a schedule σ is feasible if the number of tokens
remains positive in every place. This constraint generates precedence relations
between the firings of every couple of transitions adjacent to a place. Strict
precedence relations between two firings is defined and characterized in the
following.

DEFINITION 1.1 Let a place p = (ti, tj) and a couple of strictly positive
integers (νi, νj). There exists a (strict) precedence relation from < ti, νi > to
< tj , νj > if

Condition 1 < tj , νj > can be done after < ti, νi >;

Condition 2 < tj , νj − 1 > can be done before < ti, νi > while < tj , νj >
cannot.

The following lemma characterized the couples of firings constrained by
precedence relations:

LEMMA 1.1
A place p = (ti, tj) ∈ P with initially M0(p) tokens models a precedence
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relation between the νith firing of ti and the νjth firing of tj iff

u(p) > M0(p) + u(p) · νi − v(p) · νj ≥ max(u(p)− v(p), 0).

PROOF By Definition 1.1, a place p = (ti, tj) ∈ P with initially M0(p)
tokens models a precedence relation from < ti, νi > to < tj , νj > iff Conditions
1 and 2 hold.

1. Condition 1 is equivalent to

M0(p) + u(p) · νi − v(p) · νj ≥ 0.

2. Condition 2 is equivalent to

v(p) > M0(p) + u(p) · (νi − 1)− v(p) · (νj − 1) ≥ 0.

Combining these two inequalities, we obtain the inequality required.

1.3.2 Timed Event Graphs

A Timed Event Graph is a WEG such that u(p) = v(p) = 1 for every place
p ∈ P . The set of precedence relations induced by a Marked Timed Event
Graph G = (T, P,M0, `) can be modelled using uniform constraints as defined
previously in Chapter ??. Indeed, by Lemma 1.1, there exists a precedence
relation between the νith firing of ti and the νjth firing of tj induced by a
place p = (ti, tj) iff

1 > M0(p) + νi − νj ≥ 0,

which is equivalent to νj = νi + M0(p). A feasible schedule σ verifies then,
for every place p = (ti, tj) ∈ P , the infinite set of precedence relations

∀ν > 0, Sσ<ti,ν> + `(ti) ≤ Sσ<tj ,ν+M0(p)>

which correspond exactly to a uniform precedence constraint a = (ti, tj) with
length L(a) = `(ti) and height H(a) = M0(p). So, liveness and computation of
the maximal throughput may be both polynomially computed for this subclass
of Timed Marked WEG using the algorithms recalled in Chapter ??.

1.3.3 Equivalent places

For any place p = (ti, tj) ∈ P with initially M0(p) tokens, PR(p,M0(p))
denotes the infinite set of precedence relations between the firings of ti and tj
induced by p.

DEFINITION 1.2 Two marked places p1 = (ti, tj) and p2 = (ti, tj) are
said equivalent if they induced the same set of precedence relations between
the firings of ti and tj, i.e. PR(p1,M0(p1)) = PR(p2,M0(p2)).
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LEMMA 1.2
Two marked places p1 = (ti, tj) and p2 = (ti, tj) with u(p2)

u(p1)
= v(p2)

v(p1)
=

M0(p2)
M0(p1)

= ∆ ∈ Q+ − {0} are equivalent.

PROOF Let us assume the existence of a precedence relation induced by
p1 between < ti, νi > and < tj , νj >. Then, by Lemma 1.1, we get

u(p1) > M0(p1) + u(p1) · νi − v(p1) · νj > max(u(p1)− v(p1), 0).

m ×∆

∆.u(p1) > ∆.(M0(p1) + u(p1) · νi − v(p1) · νj) > ∆.max(u(p1)− v(p1), 0)

m

u(p2) > M0(p2) + u(p2) · νi − v(p2) · νj > max(u(p2)− v(p2), 0)

We conclude that p2 induces a precedence relation between < ti, νi > and
< tj , νj >, which completes the proof.

For every place p ∈ P , the greatest common divisor of the integers u(p) and
v(p) is denoted by gcdp, i.e. gcdp = gcd(u(p), v(p)). The following lemma
limits the possible values of the initial markings of a place to the multiples of
gcdp:

LEMMA 1.3
The initial marking M0(p) of any place p = (ti, tj) may be replaced by

M?
0 (p) =

⌊
M0(p)
gcdp

⌋
· gcdp tokens without any influence on the precedence rela-

tions induced by p, i.e. PR(p,M0(p)) = PR(p,M?
0 (p)).

PROOF Using the Euclidean division of M0(p) by gcdp, we get

M0(p) = M?
0 (p) +Rgcd(M0(p)),

with Rgcd(M0(p)) ∈ {0, . . . , gcdp − 1}.

PR(p,M0(p)) ⊆ PR(p,M?
0 (p)) Let us suppose that there exists a precedence

relation from PR(p,M0(p)) between < ti, νi > and < tj , νj >. By
Lemma 1.1,

u(p) > M0(p) + u(p) · νi − v(p) · νj ≥ max(u(p)− v(p), 0).

So, we get

u(p) > M?
0 (p) +Rgcd(M0(p)) +u(p) ·νi−v(p) ·νj ≥ max(u(p)−v(p), 0).
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Clearly,
u(p) > M?

0 (p) + u(p) · νi − v(p) · νj .

Thus, since M?
0 (p) + u(p) · νi − v(p) · νj = 0 mod (gcdp), max(u(p) −

v(p), 0) = 0 mod (gcdp) and Rgcd(M0(p)) ∈ {0, . . . , gcdp − 1}, we get

M?
0 (p) + u(p) · νi − v(p) · νj ≥ max(u(p)− v(p), 0)

and the precedence relation between < ti, νi > and < tj , νj > belongs
also to PR(p,M?

0 (p)).

PR(p,M?
0 (p)) ⊆ PR(p,M0(p)) Let us consider now a precedence relation

from PR(p,M?
0 (p)) between < ti, νi > and < tj , νj >. By Lemma

1.1,

u(p) > M?
0 (p) + u(p) · νi − v(p) · νj ≥ max(u(p)− v(p), 0).

Clearly,

M?
0 (p) +Rgcd(M0(p)) + u(p) · νi − v(p) · νj ≥ max(u(p)− v(p), 0).

Now, since M?
0 (p) + νi · u(p)− νj · v(p) = 0 mod (gcdp), we get

u(p)− gcdp ≥M?
0 (p) + u(p) · νi − v(p) · νj .

As Rgcd(M0(p)) < gcdp,

u(p) > M?
0 (p) +Rgcd(M0(p)) +u(p) · νi− v(p) · νj ≥ max(u(p)− v(p), 0)

and the precedence relation between < ti, νi > and < tj , νj > belongs
also to PR(p,M0(p)).

In the rest of the paper, it is assumed that the initial marking of any place
p is a multiple of gcdp.

1.4 Unitary WEG

This section is dedicated to an important subclass of WEG called unitary
graphs, which are firstly defined. We also recall briefly the interest of uni-
tary graphs for checking the liveness or computing the optimal throughput
of general Timed Marked WEG. The normalization of a WEG is then pre-
sented: it is a transformation introduced in [23] which simplifies the values
of the marking functions of a unitary WEG. As recalled in Section 1.5, this
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transformation is the first step for the computation of an optimal periodic
schedule. The expansion, which is another transformation presented in [26]
is also detailed and the relationship between expansion and normalization is
investigated. We present lastly a small example which illustrates the limit of
the expansion for checking the liveness or computing the maximal throughput
of a unitary WEG.

1.4.1 Definitions

A path µ of G is a sequence of k places such that µ = (p1 = (t1, t2), p2 =
(t2, t3), . . . , pk = (tk, tk+1)). If tk+1 = t1 then µ is a circuit.

DEFINITION 1.3 The weight (or gain) of a path µ of a WEG is the
product Γ(µ) =

∏
p∈P∩µ

u(p)
v(p) .

DEFINITION 1.4 A strongly connected WEG G is unitary if every circuit
c of G has a unit weight.

Figure 1.3 presents a marked unitary WEG.

t2

3

6

2
p1

5

p3
4

t4

5

5
1

t35

3

p5

12

t1

1

2

p4
0

p2

2

FIGURE 1.3: G is a Marked Unitary WEG.
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1.4.1.1 Liveness and maximal throughput for general Timed Marked
WEG

Let us consider in this subsection that G is a general Timed Marked WEG.
Then several authors [16, 26, 32] proved that if G is live, the weight of every
circuit c of G is at least 1. This condition is clearly not sufficient for the
liveness: indeed, this condition is fulfilled for any usual Marked Event Graph
with null markings, which is not live. However, this necessary condition of
liveness allows to partition the transitions into unitary WEG called unitary
components of G [26].

1. There are then two kinds of deadlocks in a general Timed Marked WEG:

• If the circuit c causing the deadlock has a unit weight, it is included
in a unitary component. This deadlock can be detected by studying
the liveness of the corresponding unitary components of G.

• Otherwise, Γ(c) > 1. The only way known to detect it is by com-
puting the firings of the transitions. Since Γ(c) > 1, this deadlock
might occur quite quickly. However, there is no bound for the max-
imum number of firings needed to ensure the liveness of this class
of circuits.

2. It is proved in [26] that the maximum throughput can be computed in
polynomial time from the maximum throughput of each unitary com-
ponent.

So, the study of the unitary graphs is fundamental to obtain efficient algo-
rithms for both problems. Moreover, they corresponds to a wide class of inter-
esting practical problems where the capacity of each place remains bounded
[22].

1.4.2 Normalization of a unitary WEG

We present here the normalization of a unitary WEG. This transformation
was originally presented in [23] and simplifies the marking functions.

DEFINITION 1.5 A transition ti is called normalized if there exists
Zi ∈ N − {0} such that ∀p ∈ P+(ti), u(p) = Zi and ∀p ∈ P−(ti), v(p) = Zi.
A unitary WEG G is normalized if all its transitions are normalized.

By Lemma 1.2, functions u(p), v(p) and M0(p) of a place p ∈ P can be
multiply by any strictly positive integer without any influence on the prece-
dence relations induced. Normalization of a Unitary WEG consists then in
finding a vector γ = (γ1, . . . , γm) ∈ (N− {0})m such that

∀ti ∈ T, ∀(pa, pb) ∈ P+(ti)× P−(ti), γa · u(pa) = γb · v(pb) = Zi.
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LEMMA 1.4
Let us suppose that G is a unitary WEG and (ti, tj) a couple of transitions

from G. Then, all paths from ti to tj have the same weight.

PROOF By contradiction, let us suppose that there exists two paths µ1

and µ2 from ti to tj with Γ(µ1) 6= Γ(µ2). Let us denote by µ′ a path from tj
to ti. Then, circuits µ1.µ

′ and µ2.µ
′ verify

Γ(µ1.µ
′) = Γ(µ1) · Γ(µ′) 6= Γ(µ2) · Γ(µ′) = Γ(µ2.µ

′)

which is impossible since every circuit of G has a unit weight.

THEOREM 1.1
Let G be a strongly connected WEG. G is normalizable iff G is unitary.

PROOF

A⇒ B Let us suppose that G is normalized. The weight of every circuit c is

Γ(c) =
∏

p∈P∩c

u(p)
v(p)

=

( ∏
ti∈T∩c

Zi

)
·

( ∏
ti∈T∩c

1
Zi

)
= 1

so G is unitary.

B ⇒ A Let us suppose now that G is unitary. We must prove the existence
of a vector γ = (γ1, . . . , γm) ∈ (N− {0})m such that

∀ti ∈ T, ∀(pa, pb) ∈ P+(ti)× P−(ti), γa · u(pa) = γb · v(pb) = Zi.

Let us build a directed valued graph G = (P,E) as follows:

1. the set of vertices is the set of places,
2. ∀t ∈ T and for every couple of places (pa, pb) ∈ P+(t)×P−(t), two

arcs e1 = (pa, pb) and e2 = (pb, pa) are built with the respective
values y(e1) = u(pa)

v(pb)
and y(e2) = v(pb)

u(pa) .

The problem consists then in finding a vector γ = (γ1, . . . , γm) ∈ (N− {0})m
such that, for every arc e = (pa, pb) ∈ E, γa · y(e) ≤ γb.
From the proof of Bellman-Ford algorithm [7], γ exists iff every circuit
c of G has a value Y (c) =

∏
e∈c y(e) = 1. Now,

Y (c) =
∏
e∈c

y(e) =
∏
p∈c

u(p) ·
∏
p∈c

1
v(p)

= Γ(c).

Since G is a unitary WEG, Γ(c) = 1 and thus Y (c) = 1, which completes
the proof.
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A polynomial algorithm to normalize a unitary WEG may be deduced from
the proof of the last theorem. Indeed, a rational vector γr = (γr1 , . . . , γ

r
m)

verifying the inequalities associated with the graph G can be build using
Bellman-Ford algorithm [7]. An integer vector γ can be obtained from γr by
setting γ = A · γr, where A is the least common multiple of the denominators
of the components of γr.

The associated system of the example pictured by Figure 1.3 is:

Z1 = 2γ5 = γ4

Z2 = 3γ4 = 2γ1 = 6γ3

Z3 = 5γ1 = 3γ2

Z4 = 5γ3 = γ2 = 5γ5

A minimum integer solution is γ = (3, 5, 1, 2, 1) with Z1 = 2, Z2 = 6,
Z3 = 15 and Z4 = 5. Figure 1.4 presents the corresponding normalized
marked WEG.

t2

6

6

6
p1

15

p3
4

t4

5

5
5

t315

15

p5

12

t1

2

2

p4
0

p2

10

FIGURE 1.4: Normalized unitary graph of the marked WEG pictured by
Figure 1.3.

1.4.3 Expansion of a unitary Timed Marked WEG

Let us suppose that G is a unitary Timed Marked WEG. The main idea
here is to prove that the sets of precedence relations induced by G can be
modelled using a Timed Event Graph.
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1.4.3.1 Study of a place

We consider here a place p = (ti, tj) of a WEG. Each transition ti may
be replaced by Ni transitions denoted by t1i , . . . , t

Ni
i such that for any k ∈

{1, . . . , Ni} and r > 0, the rth firing of tki corresponds to the
(
(r−1)·Ni+k

)
th

firing of ti. Transitions t1i , . . . , t
Ni
i are called the duplicates of ti.

Since transitions are supposed to be non-reentrant, these duplicates are
included in a circuit as pictured by Figure 1.5.

t1i t2i tNi
i

0 0

1

FIGURE 1.5: A circuit between Ni duplicates of ti modelling the non-
reentrant constraint.

LEMMA 1.5

Let p = (ti, tj) be a place from a Timed Marked WEG. If p may be replaced
by a finite set of non weighted places between the duplicates of ti and tj then

the number of duplicates Ni and Nj of ti and tj must verify
Ni
v(p)

=
Nj
u(p)

.

PROOF Let us consider two positive integers νi and νj such that the in-
equality of Lemma 1.1 holds. It is assumed that the corresponding precedence
relation is modelled by a place ps between a duplicate of ti and tj . For any
r > 0, the firings νi+r ·Ni and νj+r ·Nj are also constrained by a precedence
relation induced by ps, so

u(p)−M0(p) > u(p)·(νi+r·Ni)−v(p)·(νj+r·Nj) ≥ max(u(p)−v(p), 0)−M0(p).

These inequalities must be true for any value r > 0, so Ni ·u(p)−Nj ·v(p) = 0,
which completes the proof.

Conversely, let us suppose now that
Ni
v(p)

=
Nj
u(p)

= s ∈ N − {0}. Two

subcases are considered:
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LEMMA 1.6

Let us suppose that u(p) > v(p). If
Ni
v(p)

=
Nj
u(p)

= s ∈ N − {0} then p may

be modelled by Ni non weighted places between the Ni and Nj duplicates of
transitions ti and tj.

PROOF If u(p) > v(p), the inequality of Lemma 1.1 becomes

M0(p) + u(p) · (νi − 1)
v(p)

< νj ≤
M0(p) + u(p) · (νi − 1)

v(p)
+ 1

and thus νj =
⌊
M0(p) + u(p) · (νi − 1)

v(p)

⌋
+ 1.

For every integer νi > 0, r and s are two integers with νi = (r− 1) ·Ni + s,
r > 0 and s ∈ {1, . . . , Ni}. By definition of the duplicates, < ti, νi >=<
tsi , r >.

We get νj =
⌊
M0(p) + u(p) · s

v(p)

⌋
+ 1 + (r − 1) · Nj . Let the sequences as

and bs such that
⌊
M0(p) + u(p) · s

v(p)

⌋
+ 1 = as ·Nj + bs with bs ∈ {1, . . . , Nj}

then νj = (r − 1 + as) ·Nj + bs. We deduce that < tj , νj >=< tbs
j , r + as >.

Precedence relations between < tsi , r > and < tbs
j , r + ar > with s ∈

{1, . . . , Ni} are modelled by a place p′s = (tsi , t
bs
j ) with M0(ps) = as tokens.

For example, let us consider the place p5 = (t4, t1) of the Marked Unitary
WEG pictured by Figure 1.3 and the number of duplicatesN4 = 2 andN1 = 5.

Sequences as and bs, s ∈ {1, 2} must verify
⌊

12 + 5 · s
2

⌋
+ 1 = 5 · as + bs with

bs ∈ {1, . . . , 5}. So we obtain the couples (a1, b1) = (1, 4) and (a2, b2) = (2, 2).
Thus, p5 may be replaced by the places p′1 = (t14, t

4
1) with M0(p′1) = 1 and

p′2 = (t24, t
2
1) with M0(p′2) = 2.

LEMMA 1.7

Let us suppose now that u(p)‖eqv(p). If
Ni
v(p)

=
Nj
u(p)

= s ∈ N − {0} then p

may be modelled by Nj non weighted places between the Ni and Nj duplicates
of transitions ti and tj.

PROOF If u(p) ≤ v(p), the inequality of Lemma 1.1 becomes

v(p) · νj −M0(p)
u(p)

+ 1 > νi ≥
v(p) · νj −M0(p)

u(p)

and thus νi =
⌈
v(p) · νj −M0(p)

u(p)

⌉
with νj >

M0(p)
v(p)

.
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For every integer νj > 0, r and s can be defined as νj = (r − 1) · Nj + s
with r > 0 and s ∈ {1, . . . , Nj}. By definition of the duplicates, < tj , νj >=<
tsj , r >.

We get νi =
⌈
v(p) · νj −M0(p)

u(p)

⌉
= (r − 1) ·Ni +

⌈
s · v(p)−M0(p)

u(p)

⌉
. Let

the sequences cs and ds such that
⌈
s · v(p)−M0(p)

u(p)

⌉
= cs ·Ni + ds with ds ∈

{1, . . . , Ni} then νi = (r− 1 + cs) ·Ni + ds. We get < ti, νi >=< tds
i , r+ cs >.

Remark that
⌈
s · v(p)−M0(p)

u(p)

⌉
≤
⌈
Nj · v(p)−M0(p)

u(p)

⌉
≤ Ni. Thus cs ≤

0 and the precedence relations between < tds
i , r + cs > and < tsj , r > for

k ∈ {1, . . . , Nj} are modelled by a place ps =< tds
i , t

s
j > with M0(ps) = −ck

tokens.

For example, let us consider the place p1 = (t2, t3) of the Marked Unitary
WEG pictured by Figure 1.3 with N2 = 5 and N3 = 2. Sequences cs and ds

verify s ∈ {1, 2}, ds ∈ {1, . . . , 5} and
⌈

5 · s− 5
2

⌉
= 5 · cs + ds. So we obtain

the couples (c1, d1) = (−1, 5) and (c2, d2) = (0, 3). Thus, p1 may be replaced
by the places p′1 = (t52, t

1
3) with M0(p′1) = 1 and p′2 = (t32, t

2
3) with M0(p′2) = 0.

1.4.3.2 Minimum expansion of a WEG

DEFINITION 1.6 Let G be a strongly connected Marked WEG. G is
expansible if there exists a vector (N1, . . . , Nn) ∈ (N − {0})n such that every
place p = (ti, tj) can be replaced by non weighted places between the Ni and Nj

duplicates of transitions ti and tj following Lemmas 1.6 and 1.7, i.e.
Ni
v(p)

=

Nj
u(p)

.

An expansion of G is then a usual (non weighted) timed Event Graph which
models exactly the same sets of precedence relations as G. The number of
duplicates of such a graph verifies the system Σ(G) defined as:

Σ(G) : ∀p = (ti, tj) ∈ P,
Ni
v(p)

=
Nj
u(p)

∈ N− {0}.

Let S be the set of solutions of Σ(G).

THEOREM 1.2
Let G be a strongly connected Marked WEG. If G is expansible, then there
exists a minimum vector N? = (N?

1 , . . . , N
?
n) ∈ (N− {0})?n such that

S = {λ ·N?, λ ∈ N− {0}}.
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The Marked Event graph associated with N? is then the minimum expansion
of G.

PROOF
Let N? = (N?

1 , . . . , N
?
n) be the element from S with N?

1 minimum and let

N = (N1, . . . , Nn) ∈ S. For every place p = (ti, tj),
Ni
N?
i

=
Nj
N?
j

. As G is

connected, there exists two prime strictly positive integers a and b such that
N1

N?
1

=
N2

N?
2

= · · · = Nn
N?
n

=
a

b
. Thus N =

a

b
·N?.

By contradiction, let suppose that b > 1 then ∀l ∈ {1, . . . , n}, b is a divisor

of N?
l . Thus, there exists an integer vector k = (k1, . . . , kn) with kl =

N?
l

b
.

Thus k ∈ S with k1 < N?
1 , the contradiction.

Lastly, since elements from S are proportional, N has all its components
minimum in S.

The system Σ(G) associated with the Marked WEG pictured by Figure 1.3
is

Σ(G) =


N2/5 = N3/2
N3/1 = N4/3
N2/5 = N4/6
N1/3 = N2/1
N4/2 = N1/5

The minimum integer solution is then N? = (15, 5, 2, 6).

1.4.4 Relationship between expansion and normalization

THEOREM 1.3

Let G be a strongly connected WEG. G is expansible iff G is normalizable.
Moreover, there exists K ∈ N− {0} such that, for any ti ∈ T , Zi ·Ni = K.

PROOF

A⇒ B If G is expansible then there exists a vector N = (N1, . . . , Nn) ∈ (N−

{0})n such that for any place p = (ti, tj),
Ni
v(p)

=
Nj
u(p)

. Let us define M

as the least common multiple of integers N1, . . . , Nn, M = lcmti∈TNi.

For every place p = (ti, tj) ∈ P , we set γp =
M

Ni · u(p)
=

M

Nj · v(p)
.

Then, for any couple of places (pa, pb) ∈ P+(ti)×P−(ti), γpa
=

M

Ni · u(pa)
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and γpb
=

M

Ni · v(pb)
. So,

γpa
· u(pa) =

M

Ni
= γpb

· v(pb)

and setting Zi =
M

Ni
for any ti ∈ T , we get that G can be normalized.

B ⇒ A Conversely, let us assume now that G is normalized. So, for every
place p = (ti, tj) ∈ P , v(p) = Zj and u(p) = Zi. Let us define M =

lcmti∈TZi and ∀ti ∈ T , Ni =
M

Zi
. Then, for any place p = (ti, tj) ∈ P ,

Ni
v(p)

=
Ni
Zj

=
M

Zi · Zj
=
Nj
Zi

=
Nj
u(p)

,

and G is expansible.

Now, if G is normalized, we get
Nj
Zi

=
Ni
Zj

for every place p = (ti, tj) ∈ P .

Since G is strongly connected, it exists an integer K > 0 such that, for every
ti ∈ T , Zi ·Ni = K.

For the example pictured by Figure 1.3, we get

Z1 ·N?
1 = Z2 ·N?

2 = Z3 ·N?
3 = Z4 ·N?

4 = 30.

1.4.4.1 Liveness and maximal throughput of a unitary Timed Marked
WEG using its minimum expansion

The main interest of the expansion is to get an algorithm to check the
liveness and to compute the optimal throughput of a unitary Timed Marked
WEG. Indeed, the expansion is a (usual) Timed Marked Event Graph. As
noticed in Section 1.2.2, it corresponds then to usual uniform constraints,
for which there exists polynomial algorithms for the these two problems (see
Chapter ??).

The main drawback of this method is that the minimum number of vertices
of an expansion may be exponential. Thus, computing the expansion may not
be possible for a wide class of graphs.

As example, let us consider the circuit of n transition pictured by Figure

1.6. The numbers of duplicates of an expansion verify Nn =
N1

2n−1
and for

every i ∈ {1, . . . , n − 1}, Ni+1 =
Ni
2

. A minimum integer solution is then,

for every i ∈ {1, . . . , n}, N?
i = 2n−i and the size of the minimum expansion is

in O(2n). Thus, its size might be exponential and using the expansion might
not be suitable for a wide class of graphs.
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t1

1 1
p1

0

t2
2

1

p2
0t3
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p3
0

tn
2n−1

2

pn
2n

FIGURE 1.6: The number of vertices of the minimum expansion of Gn is
exponential.

1.5 Periodic schedule of a Normalized Marked Timed
WEG

This section is dedicated to the presentation of polynomial algorithms to
check the existence and to compute the optimal throughput of a periodic
schedule for a Normalized Marked Timed WEG. These results were first pre-
sented in [3]. From a practical point of view, the limitation to periodic sched-
ules is often considered by many authors (see [?] to get schedules easier to
implement.

The complexity of these two problems is unknown for general (non periodic)
cyclic schedules. So polynomial sufficient condition of liveness and an upper
bound of the optimum throughput can be immediately derived from the two
algorithms presented here.

Periodic schedules are first formally defined. Then, for every place p =
(ti, tj), a condition on the starting time of the first execution ti and tj is
expressed to fulfill the precedence relations induced by P . A polynomial al-
gorithm checking the existence and computing a periodic schedule is then
deduced. A simple example is lastly presented to illustrate that the through-
put of a periodic schedule may be quite far from the optimal throughput.
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1.5.1 Periodic schedules

DEFINITION 1.7 A schedule σ is periodic if each transition ti ∈ T has
a period wσi such that

∀k ≥ 0, Sσ<ti,k> = sσi + (k − 1) · wσi .

sσi is the starting time of the first firing of ti. The other firings of ti are then
repeated every wσi time units.

1.5.2 Properties of periodic schedule

LEMMA 1.8
Let us consider a place p = (ti, tj) ∈ P , and let the integer values kmin =
max(u(p)− v(p), 0)−M0(p)

gcdp
and kmax =

u(p)−M0(p)
gcdp

− 1.

1. If p induces a precedence relation between the firings < ti, νi > and
< tj , νj > then there exists k ∈ {kmin, . . . , kmax} such that u(p) · νi −
v(p) · νj = k · gcdp.

2. Conversely, for any k ∈ {kmin, . . . , kmax}, there exists an infinite num-
ber of tuples (νi, νj) ∈ (N−{0})2 such that u(p)·νi−v(p)·νj = k·gcdp and
p induces a precedence relation between firings < ti, νi > and < tj , νj >.

PROOF

1. Since gcdp = gcd(v(p), u(p)), for any tuple (νi, νj) ∈ (N − {0})2 there
exists k ∈ Z such that u(p) · νi − v(p) · νj = k · gcdp. Now, if there is a
precedence relation between < ti, νi > and < tj , νj >, we get by Lemma
1.1, assuming by Lemma 1.3 that M0(p) is a multiple of gcdp,

u(p)−M0(p) > u(p) · νi − v(p) · νj ≥ max(u(p)− v(p), 0)−M0(p),

which is equivalent to

u(p)−M0(p)− gcdp ≥ k · gcdp ≥ max(u(p)− v(p), 0)−M0(p).

So we get kmin ≤ k ≤ kmax.

2. Conversely, there exists (a, b) ∈ Z2 such that a · u(p) − b · v(p) = gcdp.
Then for any k ∈ {kmin, . . . , kmax}, and any integer q ≥ 0, the couple
of integers (νi, νj) = (k · a + q · v(p), k · b + q · u(p)) is such that u(p) ·
νi − v(p) · νj = k · gcdp. Thus p induces a precedence relation between
< ti, νi > and < tj , νj >, which achieves the proof.
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THEOREM 1.4
Let G be a Normalized Timed Marked WEG. For any periodic schedule σ,
there exists a rational Kσ ∈ Q+−{0} such that, for any couple of transitions

(ti, tj) ∈ T 2,
wσi
Zi

=
wσj
Zj

= Kσ. Moreover, the precedence relations associated

with any place p = (ti, tj) are fulfilled by σ iff

sσj − sσi ≥ `(ti) +Kσ · (Zj −M0(p)− gcdp).

PROOF Let be a place p = (ti, tj) ∈ P inducing a precedence relation
between the firings < ti, νi > and < tj , νj >. Then,

Sσ<ti,νi> + `(ti) ≤ Sσ<tj ,νj>.

Since σ is periodic, we get

sσi + (νi − 1) · wσi + `(ti) ≤ sσj + (νj − 1) · wσj .

Then, by Lemma 1.8, there exists k ∈ {kmin, . . . , kmax} such that νj =
u(p) · νi − k · gcdp

v(p)
and

sσj − sσi ≥ `(ti) + wσj − wσi + νi · wσi −
u(p) · νi − k · gcdp

v(p)
· wσj .

So, sσj − sσi ≥ `(ti) +
(
wσi −

u(p)
v(p)

· wσj
)
· νi +

(
1 +

k · gcdp
v(p)

)
·wσj −wσi . This

inequality must be true for any value νi ∈ N−{0}, so wσi −
u(p)
v(p)

·wj ≤ 0 and

then
wσi
u(p)

≤
wσj
v(p)

. As G is normalized, u(p) = Zi and v(p) = Zj . Since G is

unitary, it is strongly connected and thus, for any place p = (ti, tj),
wσi
Zi

=
wσj
Zj

.

So, there exists a value Kσ ∈ Q − {0} such that, for any transition ti ∈ T ,
wσi
Zi

= Kσ. Then, the previous inequality becomes

sσj − sσi ≥ `(ti) +Kσ · Zj ·
(

1 +
k · gcdp
Zj

)
−Kσ · Zi

and thus
sσj − sσi ≥ `(ti) +Kσ · (Zj − Zi + k · gcdp).
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Now, the right term grows with k and according to Lemma 1.8 there exists
(νi, νj) ∈ (N − {0})2 such that k = kmax, thus the precedence relation holds
iff

sσj − sσi ≥ `(ti) +Kσ · (Zj − Zi + Zi −M0(p)− gcdp)

which is equivalent to

sσj − sσi ≥ `(ti) +Kσ · (Zj −M0(p)− gcdp).

Conversely, assume this last inequality and that ∀ti ∈ T ,
wσi
Zi

= Kσ.

Then, for any integers νi and νj with u(p) · νi − v(p) · νj = k · gcdp for
k ∈ {kmin, . . . , kmax}, we can prove that σ checks the precedence relation
between < ti, νi > and < tj , νj >.

1.5.3 Existence of periodic schedules

The constraints expressed by Theorem 1.4 may be modelled by a valued
graph G = (X,A) built as follows:

1. the set of vertices is the set of transitions, i.e. X = T ;

2. To each place p = (ti, tj) is associated an arc a = (ti, tj) valued by
v(a,Kσ) = `(ti) +Kσ · (Zj −M0(p)− gcdp). Following the notation of
Chapter ??, we set L(a) = `(ti), H(a) = M0(p) + gcdp − Zj to obtain
v(a,Kσ) = L(a)−Kσ ·H(a).

t2

12 − 6 · Kσ

t1

10 − 2 · Kσ

t4

5 − 5 · Kσ

t3
6 − 15 · Kσ

12 − 3 · Kσ

6

12

5 − 11 · Kσ

10 + 4 · Kσ

FIGURE 1.7: Valued graph G = (X,A) associated with the normalized
Marked WEG pictured by Figure 1.4.
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For a given value Kσ ∈ Q+, the set of inequalities on the starting times of
the first firings of the transitions is a difference constraints system as defined
by Lemma ?? in Chapter ??. By extension, for every path µ of G, we set

L(µ) =
∑
a∈µ

L(a) and H(µ) =
∑
a∈µ

H(a).

Since L(a) > 0 for every arc a ∈ A, the following theorem is easily deduced
from Lemma ?? in Chapter ??:

THEOREM 1.5
Let G be a Normalized Timed WEG. There exists a periodic schedule iff, for
every circuit c of G, H(c) > 0.

Surprisingly, this condition is similar to a sufficient condition of liveness
proved in [23]. An algorithm in O(max(nm,mmaxti∈T logZi)) to evaluate
this condition can be found in this paper. It is also proved in [23] that this
condition is a necessary and sufficient condition of liveness for circuits com-
posed by two transitions. So, the following corollary is easily deduced:

COROLLARY 1.1
Let G be a Normalized Marked Timed WEG composed by a circuit of two

transitions. G is live iff G has a periodic schedule.

This corollary is not true anymore for circuits with 3 transitions. For ex-
ample, let us consider the Normalized Timed WEG G presented by Figure
1.8 with no particular assumption on firing durations. The sequence of firings
s = t3t1t1t1t2t3t1t1t1t1t2t2 can be repeated infinitely, so it is live.

However, for the circuit c = t1t2t3t1 we get:

H(c) =
3∑
i=1

M0(pi) +
3∑
i=1

gcdpi −
3∑
i=1

Zi = 28 + 12− 41 < 0

so the condition of Theorem 1.5 is false and this circuit has no periodic sched-
ule.

1.5.4 Optimal periodic schedule

Assume here that G is a Normalized Timed WEG which fulfills the condition
expressed by Theorem 1.5. Then, the minimum value of Kσ is

Kopt = max
c∈C(G)

L(c)
H(c)

where C(G) is the set of the circuits of G. Kopt is the minimum cycle mean
of G, as defined by [17]. The computation of Kopt and the determination of
a corresponding constraint graph was discussed in Chapter ??.
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FIGURE 1.8: G is live but has no periodic schedule.

Now, we can observe that the throughput of a periodic schedule may be
quite far from the optimum. For example, let us consider a Marked Normal-
ized Timed WEG circuit composed by two places p1 = (t1, t2), p2 = (t2, t1)
such that gcdp1 = gcdp2 = 1, M0(p1) = Z2 + Z1 − 1 and M0(p2) = 0 (see
Fgure 1.9).

t1 t2Z1

Z1

Z2

Z2
p1

p2

M0(p1)

0

FIGURE 1.9: A unitary WEG with two places with gcdp1 = gcdp2 = 1 and
M0(p1) = Z2 + Z1 − 1.

It fulfills the condition stated by Theorem 1.5:

M0(p1) +M0(p2) + gcdp1 + gcdp2 − Z2 − Z1 = 1 > 0

The associated bi-valued graph G is then pictured by Figure 1.10.
We get Kopt = max

{
`(t1)
Z1

, `(t2)Z2
, `(t1) + `(t2)

}
= `(t1) + `(t2) and the

throughput of transitions for the optimum periodic schedule σ is τσ1 =
1
wσ1

=
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t1 t2

`(t1)−KσZ1

`(t2)−Kσ(1− Z1)

`(t1)−KσZ1 `(t2)−KσZ2

FIGURE 1.10: Bi-valued graph G associated with the normalized TWEG
with two places.

1
Z1 · (`(t1) + `(t2))

and τσ2 =
1
wσ2

=
1

Z2 · (`(t1) + `(t2))
.

Let us consider now the earliest schedule σ′ of the latter example. Since the
total number of tokens in the circuit is Z1 +Z2 − 1, transitions t1 and t2 will
never be fired simultaneously by σ′. Moreover, if we denote by n1 (resp. n2)
the number of firings of t1 (resp. t2) such that the system will return to its
initial state (i.e. with Z1+Z2−1 tokens in p1 and 0 token in p2), then we must
have n1 ·Z1−n2 ·Z2 = 0. Thus, there exists k ∈ N−{0} with n1 = k ·Z2 and
n2 = k · Z1. The throughput of transitions t1 and t2 for the earliest schedule

is then τσ
′

1 =
Z2

Z2 · `(t1) + Z1 · `(t2)
and τσ

′

2 =
Z1

Z2 · `(t1) + Z1 · `(t2)
. Let us

define now the ratio

R =
τσ

′

1

τσ1
=
τσ

′

2

τσ2
=
Z1 · Z2 · (`(t1) + `(t2))
Z2 · `(t1) + Z1 · `(t2)

.

Assume without loss of generality that Z1 ≥ Z2, then

R = Z1 ·
(
Z2 · `(t1) + Z1 · `(t2)− (Z1 − Z2) · `(t2)

Z2 · `(t1) + Z1 · `(t2)

)
.

So,

R = Z1 ·
(

1− (Z1 − Z2) · `(t2)
Z2 · `(t1) + Z1 · `(t2)

)
< Z1.

The ratio R is then maximum when `(t1) tends to infinity and the bound
max(Z1, Z2) is asymptotically reached.

1.6 Conclusion

This chapter presented some basic recent advances on Timed Weighted
Event Graphs. It was focused on two open questions on these systems, namely
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the development of efficient algorithms for checking the liveness and comput-
ing the maximal throughput. They are fundamental for a practical point
of view since most of the optimization problems expressed on these systems
needed need to solve them efficiently in order to evaluate the solutions ob-
tained.

As we noticed in this chapter, the complexity of these two previous problem
is still open and is also a challenging theoretical question. If no polynomial
algorithm exists, the computation of another lower bound for the maximum
throughput should also be investigated to improve these presented here.

The mathematical tools presented here also allow to solve polynomially two
optimization problems: the computation of an initial live marking minimizing
the places capacities is developped in [22] based on the sufficient condition
of liveness expressed by Theorem 1.5. An approximation algorithm was also
developed in [24] which maximizes the throughput for place capacities at most
twice from the minimum. These two algorithms illustrates that, efficient poly-
nomial algorithms may be obtained for some particular problems on WEG,
even if the general problem does not necessarily belong to NP.
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