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Abstract
The minimization of the amount of initial tokens in a Timed Event Graph (in short TEG) under
throughput constraint is a crucial problem in industrial area such as the design of manufac-
turing systems or embedded systems. We show in this paper that this problem is strongly
related to the K-colorability of a graph. Its NP-completeness and complexity results for other
particular cyclic scheduling problems are then derived.
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1. Introduction

Cyclic scheduling problems, in which a set of generic tasks have to be performed infinitely
often, have numerous practical applications. In these systems, the throughput is usually an
important performance measure for designers (for a survey, see [1]).
In the context of manufacturing Systems, Timed Event Graphs (in short TEG) are widely used
to model complex assembly lines. The main feature of this subclass of Petri Nets is that each
place p has exactly one input transition and one output transition. Hence, TEG are conflict
free. Workshop (resp. products) are usually modelled by transitions (resp. tokens). Between
two successive transformations, products (i.e. tokens) have to be stored or have to be moved
between workshops. The amount of products, also called Work In Process (WIP in short), that
have to be stored or moved may have economical consequences. Therefore, the main design
problem is to devise an initial configuration of WIP that allows the system to reach a given
productivity and that uses the smallest amount of WIP. Many optimization algorithms and
heuristics were developped in order to solve it and some variants (see. [2-6]).
Some embedded applications may also be modelled using Timed Event Graphs: the syn-
chronous Data-flow [7] formalism, which includes TEG, is usually considered for these appli-
cations. In this case, transitions represent processes and places represent intermediate buffers.
Tokens model data exchanged between processes. Because of the high cost of the memories,
the size of the intermediate buffers must be minimum. This criteria can be expressed by as-
sociating a backwards place p ′ = (tj, ti) to any place p = (ti, tj) (see. [8]). The total size of
the buffer corresponding to p is then the amount of tokens in places p and p ′. The bi-criteria
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problem studied is then to minimize the total number of initial tokens under throughput con-
straint. Researchers have addressed some closely related problems by various approaches such
as integer linear programming [9] or more recently by model checking [10].
This paper is dedicated to the study of the complexity of this bi-criteria problem for a TEG.
Despite numerous heuristics and exact algorithms, there is no complexity results. We exhibit
in this paper a central bi-criteria problem and we prove its relationship with the K-colorability
problem. NP-completeness and some complexity results for other particular cyclic scheduling
problems are then derived.
This paper is structured as follows: Section 2 is dedicated to basic definitions and the de-
scription of the main decision problem. In Section 3, we prove that it is equivalent to the
K-colorability problem and we deduce its NP-completeness. Other results concerning impor-
tant open decision problems are derived from the former result in Section 4. We conclude lastly
with some perpectives in Section 5.

2. Basic definitions

We suppose that the reader is aware with theoretical background of Petri Net (see. [11] for
further details). However, this section recalls the main definitions concerning this paper.
Let us consider a Timed Event Graph G = (P, T, l) given by a set of places P = {p1, . . . , pm}, a
set of transitions T = {t1, . . . , tn} and a function l : T → R such that, for any t ∈ T , l(t) is the
duration of a firing of t. Every place p ∈ P is defined between two transitions ti and tj and is
denoted by p = (ti, tj) (see Figure 1 here under). We will assume that there is at most one place

t
i t

j
M(0,p)

p

Figure 1: A place p = (ti, tj).

p = (ti, tj) defined from ti to tj. Moreover, we suppose that two successive firings of a same
transition cannot overlap: this is modelled by a self loop place p = (ti, ti), ∀ti ∈ T . For a sake
of simplicity, these loops are not presented in figures.
For any transition t ∈ T , we set:

P+(t) = {p = (t, t ′) ∈ P, t ′ ∈ T } and P−(t) = {p = (t ′, t) ∈ P, t ′ ∈ T }

The incidence matrix I associated with a TEG G is defined by |P| × |T | values in {−1, 0, 1} such
that, for any couple (p, t) ∈ P × T :

• I[p, t] = 1 (resp. −1) if p ∈ P+(t) (resp. if p ∈ P−(t)) ;

• I[p, t] = 0 otherwise.

A P-semiflow is a vector Y ∈ N|P| such that YT · I = 0.
A path µ of G is defined as a sequence of α places such that µ = (p1 = (t1, t2), p2 = (t2, t3), . . . ,

pα = (tα, tα+1)). If this path is closed (i.e. t1 = tα+1), then µ is a circuit.
We denote by M(τ, p) the instantaneous marking of the place p at time instant τ ≥ 0. The
marking M(0, p) is called the initial marking of place p and M(G) points out the initial marking
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of the TEG G. The semantic rules of TEG are the same as Petri Nets. This definition presents
special structures of TEG:

Definition 2.1. Let G be a TEG:

i. G is a Symmetric Timed Event Graph (STEG in short) if each place p = (ti, tj) ∈ P is associated
with a backward place p ′ = (tj, ti) ∈ P. (p, p ′) is then called a couple of backward places.

ii. An initial marking M(G) of a STEG G is said minimally bounded if there is exactly one token for
each couple of backward place. More formally, for any couple (p, p ′) of backward places,

M(0, p) + M(0, p ′) = 1

A TEG G with an initial marking is live if each transition t ∈ T may be fired infinitely often.
Setting H(C) =

∑
p∈P∩C M(0, p) the height of a circuit C of G, it is proved in [12] that M is a live

marking iff the height of every circuit of G is strictly positive.
The throughput is usually considered as a relevant performance criterion for TEG. If σ(t, n),
with t ∈ T and n ∈ N denotes the starting time of the nth firing of t, it is defined as

lim
n→∞ min

t∈T

n

σ(t, n)

Denoting the lenght of a circuit C to L(C) =
∑

t∈T∩C l(t), Chrétienne proved the following
theorem:

Theorem 2.1. [13] Let G be a TEG with a given live initial marking M(G). The maximum throughput
of G is equal to

λ(M(G)) = min
C∈CG

H(C)

L(C)

where GG denotes the set of circuits of G.

A critical circuit c of G is such that H(c)
L(c) = λ(M(G)). Using Koenigs lemma (see. [14]), Chréti-

enne also proved the following theorem:

Theorem 2.2. [13] Let G be a TEG with a live initial marking M(G). Then, every critical circuit may
be decomposed into elementary critical circuits.

This last theorem allows us to consider only elementary critical circuits.
The aim of this paper is to study the complexity of the decision problem defined as follows:
MAX THROUGHPUT - MIN BOUNDED:

Instance: A STEG G = (T, P, l) such that l(t) = 1,∀t ∈ T and an integer K > 1.

Question: is there an initial live marking M(G) minimally bounded such that λ(M(G)) > 1
K?

3. Complexity of MAX THROUGHPUT - MIN BOUNDED

The aim of this section is to prove that MAX THROUGHPUT - MIN BOUNDED is NP-complete
using a reduction from the FLOW RATIO problem. In [15], Minty describes this problem and
exhibits its relationship with the graph colorability problem.
Let G = (V, E) be a non-oriented simple graph. An edge orientation is a function o : E → V ×V

such that, for any e = {x, y} ∈ E, o(e) ∈ {(x, y), (y, x)}.
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The flow ratio ρ(o(G)) of an orientation o is then defined as follows: for any cycle c of G, we
may associate two integers nc(o) and mc(o) corresponding respectively to the number of edges
of c in a direction and in its opposite. Then,

ρ(o(G)) = max
c∈CG

(
nc(o)

mc(o)
,
mc(o)

nc(o)

)
FLOW RATIO is then defined as follows:

Instance: A non oriented graph G = (V, E), an integer L > 0.

Question: Is there an orientation o of G such that ρ(o(G)) ≤ L ?

We define a transformation f from an instance of FLOW RATIO to an instance of MAX THROUGH-
PUT - MIN BOUNDED. Let I be an instance of FLOW RATIO given by a graph G = (V, E) and an
integer L. The corresponding instance f(I) of MAX THROUGHPUT - MIN BOUNDED is defined
as:

1. Any vertex x ∈ V is associated with a transition tx ∈ T with l(tx) = 1;

2. Any edge e = (x, y) ∈ E corresponds to two places p1 = (tx, ty) and p2 = (ty, tx);

3. K = L + 1.

Now, if o is an orientation of G, a minimally bounded initial marking for G can be deduced by
setting

1. M(0, p) ∈ {0, 1} for any p ∈ P;

2. For any place p = (tx, ty), M(0, p) = 1 iff o({x, y}) = (x, y).

Notice that f is bijective. Moreover, any minimally bounded initial marking of G is associated
with exactly one orientation of G. We are now ready to prove the relationship between ρ(o(G))

and λ(M(G)).

Lemma 3.1. For any orientation o of G associated with a minimally bounded initial marking M of G,

λ(M(G)) =
1

ρ(o(G)) + 1

Proof. Let c be a cycle of G. Then, c is associated with two circuits of G in opposite directions
denoted by C1 and C2 (see. figure 2 on the next page).
We can suppose without loss of generality that the direction of C1 corresponds to the nc(o) arcs
of c. So, H(C1) = nc(o) and H(C2) = mc(o). Moreover, L(C1) = L(C2) = nc(o) + mc(o).
The throughput λC of the STEG composed only by C1 and C2 is:

λC = min
(

nc(o)
nc(o)+mc(o) ,

mc(o)
nc(o)+mc(o)

)
= 1

max
“

nc(o)+mc(o)
nc(o)

,
nc(o)+mc(o)

mc(o)

”

= 1

max
“

mc(o)
nc(o)

,
nc(o)
mc(o)

”
+1

So, if ρc denotes the flow ratio of c, we get λC = 1
ρc+1 . Now, if c is a circuit with a maximum

flow-ratio in G, one of the corresponding circuits C1 and C2 have a minimum throughput in G,
so the equality is true.
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Figure 2: A cycle c is depicted on the left hand side of the figure. The associated marked STEG
is given on the right hand side.

Lemma 3.2. f is a polynomial transformation.

Proof. f may be computed polynomially. The correctness of the transformation may be easily
deduced from lemma 3.1.

As the result described in [15] was established before the NP-COMPLETENESS theory advent,
we clearly show that FLOW RATIO is intractable.

Theorem 3.1. FLOW RATIO is NP-COMPLETE.

Proof. FLOW RATIO belongs to NP since the flow ratio of a solution may be computed efficiently
from the throughput of the associated marked STEG (computed by Karp’s algorithm [16] for
example). Moreover, Minty’s lemma [15] states that a graph G = (V, E) is K-colorable if and
only if there exists an edge orientation of E such that the flow ratio is lower or equal to K − 1.
This result can be seen as a polynomial reduction of GRAPH K-COLORABILITY to FLOW RATIO.
As GRAPH K-COLORABILITY is NP-COMPLETE (see. [17]), the theorem holds.

We deduce now our complexity result:

Theorem 3.2. MAX THROUGHPUT - MIN BOUNDED is NP-COMPLETE.

Proof. MAX THROUGHPUT - MIN BOUNDED belongs to NP since the throughput can be ef-
ficiently computed by using Karp’s algorithm [16] and one can polynomially check that the
marking properties are met.
Since f is bijective, f and f−1 define a polynomial reduction between FLOW RATIO and MAX

THROUGHPUT - MIN BOUNDED. By theorem 3.1, the proof is completed. In fact, these two
problems are equivalent.

4. Complexity results for two closely related problems

In this part, we set computational results for two very close problems. The first one, called
MARKING OPTIMIZATION was studied by several authors [3,5], but its complexity was up to
now unknown. The second one is a subproblem of MAX THROUGHPUT - MIN BOUNDED.

4.1. The MARKING OPTIMIZATION problem
MARKING OPTIMIZATION problem was first introduced by Laftit and Proth [3].
MARKING OPTIMIZATION:

Instance: G = (P, T, l) is a TEG , Y is a P-semiflow of G, N ∈ N? and Q ∈ N?.
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Question: Is there an initial marking M(G) such that YT ·M(0, p) 6 N and λ(M(G)) > 1
Q ?

We can derive from theorem 3.2 the following theorem:

Theorem 4.1. The MARKING OPTIMIZATION problem is NP-COMPLETE.

Proof. MARKING OPTIMIZATION is in NP.
We prove now that MAX THROUGHPUT - MIN BOUNDED is a sub-problem of MARKING OP-
TIMIZATION. Let I be an instance of MAX THROUGHPUT - MIN BOUNDED given by a STEG
G and an integer K. Since G is a STEG, |P+(t)| = |P−(t)|, ∀t ∈ T . Hence, each column of the
incidence matrix of the graph has exactly as many positive entries as negative ones. Therefore,
the unit vector 1|P| is a P-semiflow. Moreover, by setting N =

|P|
2 , the constraint YT ·M(0, p) 6 N

is equivalent to require that M should be minimally bounded. Lastly, setting Q = K we deduce
that I is an instance of MARKING OPTIMIZATION.

4.2. The MAX INTRINSIC THROUGHPUT problem
Let G = (P, T, l) be a STEG. We study now the minimization of the total number of initial tokens
in such a way that the TEG structure has no more influence on the throughput. In this case, the
critical circuit is then a self-loop on a transition ti with a maximum duration.
MAX INTRINSIC THROUGHPUT:

Instance: G = (P, T, l) is a STEG and Z ∈ N?.

Question: Is there an initial live marking M(G) such that
∑

p∈P M(0, p) 6 Z and such that
λ(M(G)) > 1

max
tj∈T

(l(tj))
?

In [2,4,5,6], authors have studied the problem where the TEG is not restricted to be symmetric.
However, the forthcoming NP-completeness result holds even if this assumption is removed.

Theorem 4.2. MAX INTRINSIC THROUGHPUT is polynomial for l(t) = 1, ∀t ∈ T .

Proof. We prove that the initial marking M(0, p) = 1, ∀p ∈ P is a solution. Indeed, since
l(ti) = 1, ∀ti ∈ T , then 1

max
tj∈T

(l(tj))
= 1 and λ(M(G)) ≥ 1. As G is symmetric, every couple of

backward places needs at least two tokens to reach the throughput 1. We deduce that |P| is a
lower bound of the total initial number of tokens.
So, if |P| > Z, there is no live marking M such that

∑
p∈P M(0, p) 6 Z. Otherwise, the initial

marking built previously allows to answer the question positively.

If the durations of the transitions firings are not required to be equal to 1, the previous algorithm
builds an initial marking with an intrinsic maximum throughput. However, the total number
of tokens is not necessarily minimum, as illustrated by Figure 3 on the facing page.

Theorem 4.3. MAX INTRINSIC THROUGHPUT is NP-COMPLETE.

Proof. The problem belongs to NP. We exhibit a reduction from MAX THROUGHPUT - MIN

BOUNDED to MAX INTRINSIC THROUGHPUT. Let G = (P, T, l) be an instance of MAX THROUGH-
PUT - MIN BOUNDED defined by a STEG G = (P, T, l) and an integer value K. We build the
corresponding instance of MAX INTRINSIC THROUGHPUT as follows:

1. We build another STEG G? by adding a transition t? with l(t?) = K and a couple of
backward places (t, t?) and (t?, t) for a fixed transition t ∈ T .
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Figure 3: The STEG has three transitions with l(t1) = 1, l(t2) = 2 and l(t3) = 3. The initial
marking reaches the maximum intrinsic throughput of the system i.e. 1

3 .

2. We set Z? =
|P|
2 + 2. Notice that the maximum intrinsic throughput is 1

K .

• If M is a solution for the instance of MAX THROUGHPUT - MIN BOUNDED, we build a
solution M? for the corresponding instance of MAX INTRINSIC THROUGHPUT by adding
one token on each added places. The total number of initial tokens is Z? =

|P|
2 +2. Now, if

c? is a critical circuit of G?, then by Theorem 2.2, c? can be considered as elementary. We
get then two cases:

1. If c? is included in G, then λ(M?(G?)) ≥ H(c?)
L(c?) ≥

1
K ;

2. Else, since c? is elementary, it is composed only by the two transitions t and t? and
thus

H(c?)

L(c?)
=

2

K + 1
>

1

K

So, M? is a solution to the corresponding instance of MAX INTRINSIC THROUGHPUT.

• Let us suppose now that M? is a solution for the instance of MAX INTRINSIC THROUGH-
PUT. Setting M(0, p) = M?(0, p) for every place p ∈ P, we prove that M is a solution to
the corresponding instance of MAX THROUGHPUT - MIN BOUNDED.

By definition of M and M?, λ(M(G)) ≥ λ(M?(G?)) ≥ 1
K .

Now, let c be the circuit of G? composed by transitions t and t?. Since M? is a live marking,
H(c) ≥ 1. So, H(c)

L(c) =
H(c)
K+1 ≥ 1

K . So, H(c) ≥ 1 + 1
K and then c has at least two tokens.

So, the number of initial tokens of G is upper bounded by |P|
2 . Since M? is live, M is live

and then, for every couple (p, p ′) of backward places,

M(0, p) + M(0, p ′) ≥ 1

So, there is exactly one token for every couple of backward places and M is minimally
bounded.

5. Conclusions

We have presented in this paper several complexity results on TEG. We have exhibited a de-
cision problem that seems to play a central role in the study of bi-criteria problem for TEG. It
allows to set the complexity of important problem even for instance with severe constraints.
Moreover, we proved the equivalence between our bi-criteria scheduling problem and the K-
colorabilty problem. We hope that this equivalence will lead to new algorithms for the resolu-
tion of our scheduling problem.
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